
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220779201

Approximating the Minimum Degree Spanning Tree to Within One from the

Optimal Degree.

Conference Paper · January 1992

DOI: 10.1145/139404.139469 · Source: DBLP

CITATIONS

108
READS

296

2 authors, including:

Martin Fürer

Pennsylvania State University

90 PUBLICATIONS 1,666 CITATIONS

SEE PROFILE

All content following this page was uploaded by Martin Fürer on 28 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220779201_Approximating_the_Minimum_Degree_Spanning_Tree_to_Within_One_from_the_Optimal_Degree?enrichId=rgreq-a6491545b1fe32e0997d75e4212f3fbf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3OTIwMTtBUzoxMDE5MDE4MTEwNjA3MzZAMTQwMTMwNjY5MzEwOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220779201_Approximating_the_Minimum_Degree_Spanning_Tree_to_Within_One_from_the_Optimal_Degree?enrichId=rgreq-a6491545b1fe32e0997d75e4212f3fbf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3OTIwMTtBUzoxMDE5MDE4MTEwNjA3MzZAMTQwMTMwNjY5MzEwOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a6491545b1fe32e0997d75e4212f3fbf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3OTIwMTtBUzoxMDE5MDE4MTEwNjA3MzZAMTQwMTMwNjY5MzEwOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Martin_Fuerer?enrichId=rgreq-a6491545b1fe32e0997d75e4212f3fbf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3OTIwMTtBUzoxMDE5MDE4MTEwNjA3MzZAMTQwMTMwNjY5MzEwOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Martin_Fuerer?enrichId=rgreq-a6491545b1fe32e0997d75e4212f3fbf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3OTIwMTtBUzoxMDE5MDE4MTEwNjA3MzZAMTQwMTMwNjY5MzEwOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pennsylvania_State_University?enrichId=rgreq-a6491545b1fe32e0997d75e4212f3fbf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3OTIwMTtBUzoxMDE5MDE4MTEwNjA3MzZAMTQwMTMwNjY5MzEwOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Martin_Fuerer?enrichId=rgreq-a6491545b1fe32e0997d75e4212f3fbf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3OTIwMTtBUzoxMDE5MDE4MTEwNjA3MzZAMTQwMTMwNjY5MzEwOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Martin_Fuerer?enrichId=rgreq-a6491545b1fe32e0997d75e4212f3fbf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3OTIwMTtBUzoxMDE5MDE4MTEwNjA3MzZAMTQwMTMwNjY5MzEwOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Chapter 38

Approximating the Minimum Degree Spanning Tree to within One from the

Optimal Degree

Martin Furer*

Abstract

We consider the problem of constructing a spanning

tree for a graph G = (V, E) with n vertices whose max-

imal degree is the smallest among all spanning trees

of G. This problem is easily shown to be NP-hard.

We describe an iterative polynomial time approxima-

tion algorithm for this problem. This algorithm com-

putes a spanning tree whose maximal degree is at most

O(A* + log n), where A* is the degree of some optimal

tree. The result is generalized to the case where only

some vertices need to be connected (Steiner case) and

to the case of directed graphs. It is then shown that

our algorithm can be refined to produce a spanning

tree of degree at most A* + 1. Unless P = NP, this is

the best bound achievable in polynomial time.

1 Introduction

The problem of computing a spanning tree of a

graph that satisfies given constraints has been

studied before [6], [7], [8], [19]. Depending on the

constraints, it has been characterized by different

complexity classes. Though the problem of com-

puting a minimum cost spanning tree in a graph

with edge weights is efficiently solvable both in

the sequential and the parallel cases, even simple

constraints on the structure of the resulting tree

frequently make the problem AT-hard. A compre-

hensive list of AY’-complete constrained spanning

tree problems can be found in [12], [15].

Consider the minimum degree spanning tree

(MDST) problem, which is that of constructing

* ~omputer Science Department, Pennsylvania State tJniver-

sity, University Park, PA 16802, f urer~cs .psu. edu

t computer Science Department, Pennsylvania State Univer-

sity, University Park, PA 16802, rbkQcs. psu. edu

Balaji Raghavacharit

a spanning tree for a graph G = (V, E) with

n vertices whose maximal degree is the small-

est among all spanning trees of G. This prob-

lem is easily shown to be IVP-hard, Let T* be

an optimal spanning tree, whose maximal degree

is A*. We are interested in finding approxima-

tion algorithms for this problem which guarantee

some nontrivial approximation quality. Furer and

Raghavachari [10] have given a parallel approxi-

mation algorithm which produces a spanning tree

of degree O(A* log n). In this paper, the prob-

lem is reduced to that of computing a sequence

of maximal matchings on some auxiliary graphs.

In the Steiner version of this problem, along with

the input graph, we are also given a distinguished

set of vertices (D ~ V) and a solution is a tree of

minimum degree which spans the set D. The min-

imum degree Steiner tree problem is more general

and the MDST problem is the special case where

D = V. In another earlier work, Agrawal, Klein

and Ravi [5] have shown that even the more gen-

eral minimum degree Steiner tree problem can be

approximated to within a log n factor. They use

approximations to the multicommodity flow prob-

lem in their solution.

An approximation algorithm finds applica-

tions in the computation of spanning trees in dy-

namic net works for non-critical broadcast. Solu-

tions to the broadcast problem have mainly con-

centrated on how to complete the broadcasting as

quickly as possible [11]. But there are inst antes

like the distribution of mail and news on the Inter-

net, in which the broadcast need not be executed

on a priority basis. One of the parameters that

different sites may want to reduce is the amount

of work done by their site. Broadcasting informa-

317

318

tion on a minimum degree spanning tree is one

such solution. Another application for this prob-

lem is in the area of designing power grids. Here

the cost of splitting the output of a station may

grow rapidly with the degree of the split. We need

reliable networks of small maximal degree. Ad-

ditionally, this problem is interesting in its own

right. Recently there has been a flurry of activity

on approximating various NP-complet e problems

[3], [4], [2], [10], [16], [17], [18], [20], [21]. Our re-

sult shows that the minimum degree spanning tree

problem is approximable within an additive term

of one. The only other problems which we know

to have similar approximation properties are the

edge coloring problem [14], [22] and 3-colorability

of planar graphs [1], [13].

In this paper, we start with an approximation

algorithm which finds a spanning tree of degree

at most O(A* + log n). We show that a similar

bound is achievable in the case of directed graphs

and in the Steiner version of the problem. We

then present a refined algorithm which produces

a spanning tree of degree at most A* + 1. We

observe that unless P = NP, this is the best

bound achievable in polynomial time.

The following are the main results of this

paper.

THEOREM 1.1. There is

approximation algorithm jor

spanning tree problem which

tree of degree O(A* + log n).

a polynomial time

the minimum degree

produces a spanning

THEOREM 1.2. There is a polynomial time

approximation algorithm for the minimum degree

Steiner tree problem which produces a Steiner tree

of degree O(A* + log n).

THEOREM 1.3. There is a polynomial time

approximation algorithm for the directed version

of the minimum degree spanning tree problem

which produces a directed spanning tree of degree

O(A* + logn).

THEOREM 1.4. There is a polynomial time

approximation algorithm for the minimum degree

spanning tree problem which produces a spanning

tree of degree at most A* + 1.

FURER AND RAGHAVACHARI

2 A Simple Approximation Algorithm

The first algorithm we present provides the funda-

mental ideas that we use in all our algorithms. We

start with an arbitrary spanning tree T of G’. We

denote by p(u) the degree of vertex u in T. We try

to reduce the degrees of vertices with “large” de-

grees iteratively using the following scheme. Con-

sider an edge (u, v) of G which is not in T. Let

C be the unique cycle generated when (u, v) is

added to T. Suppose there is a vertex w in C

with the property that p(w) z max(p(u), p(v)) +2.

We now introduce an “improvement” in T by

adding the edge (u, v) and deleting one of the

edges in C’ incident to w. Note that we called

this step an improvement because the maximum

of {p(u), p(v), p(w)} has decreased by at least one.

DEFINITION 2.1. A locally optimal tree

(LOT) is a tree in which none of the non-tree edges

produce any improvements. Its maximal degree is

always denoted by k.

One of the attractive ideas to approximate

the MDST problem is to construct a LOT, and

then ask the question, how far from an optimum

could such a tree be? This idea poses a little

difficulty. We are not aware of how such a local

improvement algorithm could be implemented to

run in polynomial time. However we wish to

observe some crucial properties of LOTS which we

utilize in our first algorithm.

Let k be the maximal degree of a LOT T. Let

Xi be the set of vertices of degree i in T. We define

groups of vertices S~ as follows:

(2.1) Si=(jxj

j=;

In other words, S; contains those vertices of T

which have degree at least i.

THEOREM 2.1. For any b > 1, the maximal

degree k of a locally optimal tree T is less than

bA* + Pogb nl. Hence k = O(A* + log n).

Proof. First we note that for i = k, k – 1,...,

the rate of expansion of the sets S’i (the ratio

[Si_ll/[S;l) can be larger than b at most O(logb n)

times in a row. To be more precise, there is

an i with k– [log~ n] + 1 < i < k such that

APPROXIMATING THE MINIMUM DEGREE SPANNING TREE 319

[S~_ll < b[Sil. Otherwise

which is a contradiction because every IS; [< n,

while b[l”gb ~1 ~ n and lS~] > 1. suppose we

remove the vertices of S; from 1’. This splits T

into a forest F with t trees. As each vertex in Si

has degree at least i, we count at least i\S;l edges

incident to these vertices. Also because T is a tree,

at most IS; I – 1 of these edges are within S; itself

and thus counted twice. Therefore we have

(2.3) t ~ ;Isil – 2(1s;] – 1)

By the local optimality condition, every edge

between trees in F is incident to at least one

vertex of degree i – 1. We have identified t +

[Sil components such that each edge between

components is incident to at least one vertex of

s&~. The vertices of S;_l are called critical

vertices and the set S;-l is a witness to a lower

bound of Q(Ic –log n) for A*. In any spanning tree

of G, there are at least t +]Si] – 1 edges connecting

these components and each one of these edges is

incident to at least one vertex in S;_l. Hence the

average degree of vertices in Si_l in any spanning

tree of G is at least

(2.4)
t+ls; l–1

1s,-1[

The maximal degree A* is at least the average

degree of these vertices. Hence

implies

equation (2.3)

(2.5)

>—
b

Combining equation (2.5) with the condition on

the range of i, we get k < bA* + (log~ nl. u

This can now be converted into a polynomial

time algorithm with the desired performance as

follows. Note that in the above theorem we used

the local optimality condition only on “high” de-

gree vertices. Therefore the same result holds for

any tree satisfying the local optimality condition

for the vertices in Si with i = k – [logb nl + 1.

We might call such a tree a pseudo optimal tree

(POT). The following algorithm solves the prob-

lem in polynomial time. We start with an arbi-

trary spanning tree 2’ of G. Let k be the maximal

degree of T. In each phase, the algorithm tries to

reduce the degree of some vertex whose degree is

between k and k – hog nl, using local improve-

ment steps. Each phase of the algorithm can be

implemented in polynomial time using standard

techniques for searching graphs. The algorithm

stops when no vertex in Si has a local improve-

ment. We use a potential function argument to

show that the algorithm converges in a polyno-

mial number of steps.

Proof of Theorem 1,1. We show that the

iterative algorithm sketched above satisfies this

theorem. The observation that followed Theorem

2.1 establishes that the degree of the resulting

tree is bounded by O(A* + log n). We just need

to show that the number of phases is bounded

by a polynomial in n. Consider an exponential

potential function + on the vertex set of T. If the

degree of a vertex u is d in the tree T, the potential

~(u) is defined to be cd, for any constant c >2.

The total potential O(T) of the tree is defined to

be the sum of the potentials of all the vertices. If

k is the maximal degree of T,

(2.6) @(T) s nck

Any improvement step on T reduces the degree of

some vertex in Si for i = k – Pog nl. Therefore

the reduction in potential due to any improvement

is at least

(2.7)A@ > (ci + 2- Ci-2) - (3 . c;-’)

= (c-1) .(c-2). c~-’

Ck
> c.— where c= v

> ~ ;(T)
.—

~2

In other words, the potential reduces by at

least a polynomial factor. Therefore in 0(n2)

320 FWRER AND RAGHAVACHARI

steps, the potential reduces by a constant factor.

Hence the number of phases is bounded by O(n3).

Alternatively, we could argue that k cannot stay

the same for more than n2 /c phases. Also the

value of k cannot decrease more than n times,

again implying an O (n3) bound on the number

of phases. As mentioned before, each phase can

be implemented in polynomial time. Hence the

above algorithm runs in polynomial time. 0

3 The Steiner Problem

Consider a graph G = (V, E) and a distinguished

set of vertices D ~ V. The Minimum Degree

Steiner Tree problem is that of finding a tree of

minimum degree, which spans the set D. This is

a generalization of the MD ST problem. Agrawal,

Klein and Ravi [5] have shown that this problem

can be approximated in polynomial time to within

a factor of O(log n) of the degree of an optimal

tree. Their algorithm is based on reducing this

problem to the multicommodity flow problem.

They also provide approximations for computing

the toughness of a graph, which was defined

by Chvii.tal [9]. We provide an approximation

algorithm for the Steiner problem which finds a

Steiner tree whose degree is O(A* + log n). Our

algorithms can also be used to give better bounds

on the toughness of a graph.

We start with an arbitrary tree T which spans

D and retain only those edges which separate

the set D in T. Let W be the set of vertices

spanned by T. For the spanning tree problem,

the improvement step was just defined in terms

of exchanging one edge for another edge. This

idea is insufficient in this problem. We extend

the exchanging idea as follows. Consider any path

between two vertices in W which goes entirely

through vertices of V – W except for the end

points. We call such a path as a non-tree path.

Adding any non-tree path to T introduces a

unique cycle. To make it into a tree again, we can

remove from this cycle any one edge of T which

is incident on a vertex of high degree. We also

extend the notion of a locally optimal tree to the

Steiner case.

DEFINITION 3.1. A pseudo optimal Steiner

tree (POST) is a Steiner tree with the following

properties:

1. Every edge in the tree separates at least two

distinguished vertices. In other words, there

are no useless edges because all leaves of the

tree are distinguished vertices.

2. None of the non-tree paths produce any im-

provement for any vertex in S~ for i = k –

Pog nl, where k denotes the maximal degree

of the tree. If this property is true for all i,

then the tree is a locally optimal Steiner tree

(LOST).

THEOREM 3.1. For any b > 1, the maximal

degree k of a locally optimal Steiner tree T is at

most bA* + llog~ nl. Hence k = O(A* + log n).

Proof. The proof is similar in structure to the

proof of Theorem 2.1. As before, we find some i

between k and k – Pog nl where the ratio between

lS~l and 1S;-1 I is bounded by a constant. For such

a value of i, Si_l forms a critical set and we can

show that a large number of components need to

be connected through this small set of vertices in

any Steiner tree. This gives a lower bound on

the average degree of these vertices, which in turn

is a lower bound on A*. Note that we need to

use the fact that every leaf of T is a distinguished

vertex (condition 1 of Definition 3.1) in a crucial

way. We count the number of components formed

in the tree by the removal of certain vertices.

This condition ensures that every component has

a distinguished vertex and needs to be connected

to the others. Every possible connection needs to

use the critical vertices that we identified. With

the above ideas, the proof is a simple extension of

Theorem 2.1 and is left to the reader. Cl

This idea can be converted into a polynomial

time algorithm which produces a Steiner tree of

degree O(A* + log n), satisfying Theorem 1.2. An

iterative algorithm similar to the one for spanning

trees runs in polynomial time and produces a

Steiner tree whose degree is O(A* + log n).

4 Directed Spanning Trees

We now show how to extend our algorithm to

handle directed graphs. In this case the input is a

directed graph G together with a special vertex r

which is the root of the tree. The root is reachable

APPROXIMATING THE MINIMUM DEGREE SPANNING TREE 321

from all vertices of the graph. A rooted spanning

tree T of G is a subgraph of G with the following

properties:

1. T does not contain any cycles.

2. The out degree of every vertex except r is

exactly one.

3. There is a path in T from every vertex to the

root r.

The degree of a rooted spanning tree is the

maximal indegree of any vertex. Note that di-

rected graphs pose a severe problem. There is no

easy way to define improvements in the case of di-

rected graphs. Consider a non-tree edge (u, v) in

G. In the case of undirected graphs, adding such

an edge to T always produces a cycle and every

vertex in that cycle (except u and v) can poten-

tially benefit from this edge. This does not work

for directed graphs.

For directed graphs we define an improvement

step in the following way. Consider a vertex v of

indegree i. We try to see if the indegree of the

vertex can be reduced by attaching one of the i

subtrees of v to another vertex of smaller degree.

The improvement step consists of two parts. We

first move the root of the subtree T’ that is being

removed from v to a “convenient” vertex in that

subtree. T’ is then attached to another vertex

outside the tree to which the new root has a

connection. The set of convenient vertices are

those in the strongly connected part of the root

of T’ in the graph induced by the vertices of T’

with all non-tree edges removed from vertices of

degree i – 1 or greater.

We define locally and pseudo optimal directed

spanning trees as before. The algorithm tries

to decrease the degrees of vertices in Si for i =

k – Pog nl using the improvement step above. The

following lemma is useful in the proof of Theorem

1.3.

LEMMA 4.1. Let T be a directed spanning tree

of degree k. Let S; consist of those vertices whose

indegree is at least i. Suppose we remove the

vertices of Si from T, breaking T into a jorest F.

Then there are at least IS; I . (i – 1) + 1 trees of F

whose vertices do not have descendants of degree i

or greater in T.

Proof. The proof uses induction on the size

of S; and follows from this simple observation.

Suppose we build the tree from scratch, starting

from the root. This produces the base of the

induction with at least one leaf. Each addition

of a vertex to the set Sz can remove at most one

tree from the set of candidate trees, but adds at

least i more. El

Proof of Theorem 1.3. As in the proof of the

undirected case, we look for an i in the range k

to k – Pog nl where the set Si does not “expand”

by more than a constant factor. This leads to

a critical set S~_l. In the undirected case, we

look at all the trees in the forest generated by the

removal of Sz from T. This does not work right

in directed graphs due to the possibility of some

of these trees having descendent vertices in Si.

Hence we concentrate only on those trees whose

vertices have no descendants of degree i or larger.

By Lemma 4.1, there are at least lSi[. (i – 1)+1

such trees. These trees along with the vertices of

Si form the large number of components which

have to use vertices of S;-l in order to form a

directed spanning tree. The rest of the proof is

similar to Theorem 1.1 and is left to the reader. Cl

5 The A* + 1 algorithm

We now show how the previous idea can be refined

into an algorithm which produces a spanning tree

of degree at most A* + 1. The local optimalit y

property that we used, is that no edge should be

able to reduce the maximal degree of vertices on

the basic cycle iadumd by that edge. Suppose

k were the maximal degree of a spanning tree

T, Observe that the local optimality condition

is stricter than necessary. For an algorithm to

show progress, it is sufficient to reduce the number

of vertices of maximal degree. In doing so, the

degrees of other vertices can increase arbitrarily

as long as they remain less than k.

DEFINITION 5.1. Let (u, v) @ T be an edge in

G. Suppose w is a vertex in the cycle generated by

adding (u, v) to T. If p(u) ~ k – 1, we say that u

blocks w from (u, v). If neither u nor v blocks w,

then (u, v) can be used to reduce the degree of w

through a local improvement step. In such a case,

322 FfiRER AND RAGHAVACHARI

we say w benefits from (u, v).

Let S be the set of vertices of degree k. The

algorithm works in phases. In each phase we try

to reduce the size of S by one. If successful,

we move on to the next phase. As the size of

S reduces by one in each phase (except the last

one), there are at most O (n/k) phases when the

maximal degree is k. Summing up the harmonic

series corresponding to reducing values of k proves

that there are at most O(n log n) phases. We will

show later that if it is not possible to reduce the

size of S, then there is a set B of degree k – 1

vertices in T such that, the tree T satisfies the

conditions of the following theorem and hence the

degree of T is at most A“ + 1.

THEOREM 5.1. Let T be a spanning tree of

degree k of a graph G. Let A* be the degree of

a minimum degree spanning tree. Let S be the

set of vertices of degree k. Let B be an arbitrary

subset of vertices of degree k – 1 in T. Let S U B be

removed from the graph, breaking the tree T into

a forest F. Suppose G satisfies the condition that,

there are no edges between different trees in F.

Then ksA*+l,

ProoJ As there are no edges in G connecting

the different subtrees of F, the only way we

can make a spanning tree is by connecting these

clusters through vertices in S and B. By a simple

counting argument, it is easy to show that F

contains at least lS[k+/B/(k –1)–2(lS[+lBl–1)

subtrees. Therefore in any spanning tree of G,

the average degree of vertices in S U B is at least

k–l–([Bl –1)/(lSl+/Bl). Avertex withmaximal

degree has at least average degree and hence every

spanning tree has at least one vertex of degree at

least k – 1 in S U B. Therefore A* > k – 1.0

We observe that Theorem 5.1 is powerful and

easily generalizes to the Steiner case as well as the

directed case. Though we do not have polynomial

time algorithms for these two problems which

produce a tree of degree A* + 1, we believe that

Theorem 5.1 points the way. Note that a tree T

of degree k, along with a blocking set B is a proof

that A* is at least k – 1.

The following is a top-down view of our al-

gorithm. Suppose we remove the set S~, the set

of all vertices of maximal degree from T. Observe

the forest F generated. If there are no edges be-

tween the different components of Z’, we are done.

Theorem 5.1 can be applied here and in this case

k = A*. Otherwise any edge between components

of F can be used to reduce the degree of some ver-

tex in Sk. If such an edge is not blocked by a

vertex of degree (k – 1), we make this improve-

ment, reducing the number of degree k vertices by

one and continue. Otherwise let w be a vertex of

degree k and let u be a vertex which blocks w.

Let Fu be the component of F which contains u.

Suppose the degree of u can be reduced by one by

running our procedure in the graph induced by the

vertices of F.. Then u is made non-blocking and

in this case, we say that a sequence of improve-

ments propogate to w. The following observation

is crucial and shows why vertices do not interfere

with each other in trying to become non-blocking.

Observation: Let u be a vertex which blocks

w as described above. When u tries to become

non-blocking, it is sufficient if it tries to look for

improvements within the subgraph induced by the

vertices of F.. Any improvement that is possible

for u by using edges going outside of l?. can be

used directly to benefit a vertex from Sk.

The algorithm is implemented in a bottom

up fashion as follows. We remove all vertices in

sk U S,&l from T and mark all the connected

components as being good. All vertices in Sk US&l

are marked as bad. If there are no edges between

good components, the algorithm stops. In this

case, we will show that the set of bad vertices

remaining are witnesses to the fact that k s

A* + 1. Otherwise let (u, v) be an edge between

two good components F. and F.. We add (u, v)

to T and observe the cycle generated. If there is a

vertex of degree k in this cycle, we have identified

a set of improvements which propogate to this

vertex. Making these changes reduces the size of

Sk by one. Otherwise there is at least one bad

vertex of degree (k – 1) on the cycle. We mark

all bad vertices on this cycle as good and make a

union of all components on this cycle along with all

the degree (k – 1) vertices. In all cases, we either

find a way to reduce the degree of some vertex in

APPROXIMATING THE MINIMUM DEGREE SPANNING TREE 323

sk or find a blocking set with which we can apply

Theorem 5.1.

LEMMA 5.1. Any vertex u marked good can be

made non-blocking within the subgraph generated

by the vertices of the good component of u.

Proof. The proof proceeds by induction on

the number of unions made by the algorithm.

When the algorithm begins, only vertices of degree

less than or equal to (k – 2) are marked as

good. By definition, these vertices are non-

blocking. The only time that a vertex u of degree

(k – 1) was marked as good was when it was on

the cycle generated by an edge added between

two good components. We can add that edge

and reduce the degree of u by one and make

it non-blocking. Hence our algorithm maintains

only vertices which can be made non-blocking

within good components. Note that any update

needed to make a vertex non-blocking is within

the vertices of its component. Cl

LEMMA 5.2. When the algorithm stops, k s

A*+l.

Proof. Let S be Sk and B be the bad vertices

of degree k – 1. Note that the algorithm stops

only when there are no edges between the good

components. Hence the tree T along with these

sets S and B satisfy the conditions of Theorem

5.1 and we get the desired result. El

Proof of Theorem 1.4. As observed earlier,

there are at most O (n log n) phases. In each phase

we try to find improvements which propagate to

vertices of sk. Lemma 5.1 assures that when-

ever we find a vertex w of degree k which can

be marked as good, we can indeed find a sequence

of improvements which propagates to w. Lemma

5.2 shows that when the algorithm stops the de-

gree of the resulting tree is within one from the

optimal degree. Each phase of the algorithm can

be implemented in nearly linear time using the

disjoint set union-find algorithm for maintaining

connected components. Therefore the entire al-

gorithm runs in O(mn log na(n)), where m is the

number of edges and a is the inverse Ackerman

function. II

6 Conclusions

We have demonstrated iterative algorithms based

on combinatorial techniques for approximating the

minimum degree spanning tree and related prob-

lems. We believe that it is possible to implement

our algorithms efficiently. The exact complexities

of some of our algorithms are not clear. Is it possi-

ble to find a LOT or a LOST in polynomial time?

As we mentioned earlier, we do not know how to

find one of these in polynomial time. We obtained

polynomial time approximation algorithms by us-

ing the local optimalit y condition on high degree

vertices only. We are not aware of any example

which would require more than polynomial time

to find a LOT. We showed that a LOT is within an

additive term of log n from the optimal. Is there

a tighter bound? We have an example where the

optimal tree is of degree 3 and there is a LOT of

degree Q(~). Is there a better example? An-

other natural open question is to ask whether the

A* + 1 algorithm can be extended to handle the

Steiner case or the directed case. How well can

parallel algorithms do in this problem? Is there

an NC algorithm which can obtain a tree of de-

gree A* + 1? The list of IVP-complete problems

which can be approximated to within one from

the optimal is small. Is there some relationship

among these problems?

References

[1]

[2]

[3]

[4]

[5]

[6]

K. Appel and W. Haken, Every planar map is

four-colorable, Illinois J. Math. 21 (1977), 429-

567.

A. Agrawal, P. Klein, S. Rao and R. Ravi,

Approximation through Multicommodity Flow,

Proc. of 31st FOCS (1990), 726-737.

A. Agrawal, P. Klein and R. Ravi, When Trees

Collide: An Approximation Algorithm for the

Generalized Steiner Problem on Networks, Proc.
of 23rd STOC (1991), 134-144.

A. Agrawal, P. Klein and R. Ravi, Ordering Prob-

lems Approximated: Single-Processor Scheduling

and Interval Graph Completion, Proc. of 18th

ICALP (1991), LNCS 510, 751-762.

A. Agrawal, P. Klein and R. Ravi, How Tough is

the Minimum-degree Steiner Tree? A New Ap-
proximate Min-max Equality, Personal Commu-

nication.

P.M. Camerini and G. Galbiati, The Bounded

324 FfiRER AND RAGHAVACHARI

Path Tree Problem, SIAMJ. A~eb. Disc. Meth. [22] V.G. Vizing, On an estimate of the chromatic

3, (1982) 474-484. class of a p-graph (Russian), Diskret. Anal. 3

[7] P.M. Camerini, G. Galbiati and F. Maffioli, Com- (1964) 25-30.

plexity of Spanning Tree Problems: Part I, Euro-

pean J. Oper. Res. 5 (1980) 346-352.

[8] P.M. Camerini, G. Galbiati and F. Maffioli,

On the Complexity of Finding Multi-constrained

Spanning Trees, Disc. Appl. Math. 5 (1983) 39-

50.

[9] V. Chvzital, Tough Graphs and Hamiltonian Cir-

cuits, Disc. Math. 5 (1973), 215-228.

[10] M. Furer and B. Raghavachari, An NC Ap-

proximation Algorithm for the Minimum Degree

Spanning Tree Problem, Proceedings of the 28th

Annual Allerton Conference on Communication,

Control and Computing (1990), 274-281.

[11] H. Garcia-Molina and B. Kogan, An Implemen-

tation of Reliable Broadcast Using an Unreliable

Multicast Facility, Proc. Seventh Symp. on Reli-

able Dist. Syst. (1988) 101-111.

[12] M.R. Garey and D.S. Johnson, “Computers and

Intractability: A Guide to the Theory of NP-

completeness,” W.H. Freeman, 1979.

[13] M.R. Garey, D.S. Johnson and L. Stockmeyer,

Some Simplified NP-complete Graph Problems,

Theor. Comput. Sci. 1 (1976), 237-267.

[14] I. Holyer, The NP-Completeness of Eclge-

Coloring, SIAM J. Comput. 10 (1981) 718-720.

[15] D.S. Johnson, The NP-completeness Column: An

Ongoing Guide, J. Algorithms 6 (1985) 145-159.

[16] F.T. Leighton, F. Makedon, S. Plotkin, C. Stein,

E. Tardos and S. Tragoudaa, Fast Approximation

Algorithms for Multicommodity Flow Problems,

Proc. of 23rd STOC (1991), 101-111.

[17] F.T. Leighton and S. Rae, An Approximate Max-

Flow Min-Cut Theorem ibr Uniform Multicom-

modity Flow Problems with Applications to Ap-

proximation Algorithms, Proc. of 29th FOCS

(1988), 422-431.

[18] J.K. Lenstra, D.B. Shrnoys and E. Tardos, Ap-

proximation Algorithms for Scheduling Unrelated

Parallel Machines, Proc. of 28th FOCS (1987),

217-224.

[19] C.H. Papadimitriou and M. Yannakakis, The
complexity of restricted spanning tree problems,

JACM 29 (1982), 285-309.

[20] S.A. Plotkin, D.B. Shrnoys and E. Tardos, Fast

Approximation Algorithms for Fractional Pack-

ing and Covering Problems, Proc. of 32nd FOCS

(1991), 495-504.

[21] H. Saran and V.V. Vasirani, Finding a k-Cut

within Twice the Optimal, Proc. of 32nd FOCS

(1991), 743-751.

View publication statsView publication stats

https://www.researchgate.net/publication/220779201

