

Aho-Corasick Automata

String Data Structures

● Over the next few days, we're going to be
exploring data structures specifically
designed for string processing.

● These data structures and their variants
are frequently used in practice

Looking Forward

● Today: Aho-Corasick Automata
● A fast data structure for string matching.

● Thursday: Suffix Trees
● An absurdly versatile string data structure.

● Tuesday: Suffix Arrays
● Suffix-tree like performance with array-like

space usage.

String Searching

The String Searching Problem

● Consider the following problem:

Given a string T and k nonempty strings
P₁, …, Pₖ, find all occurrences of P₁, …, Pₖ

in T.
● T is called the text string and P₁, …, Pₖ are

called pattern strings.
● This problem was originally studied in the

context of compiling indexes, but has found
applications in computer security and
computational genomics.

a t

a t e

a b

a b o

b e

b e d

e d g

g

Pattern Strings

a b e d g e t

e

e t

u t

a b

Some Terminology

● Let m = |T|, the length of the string to be
searched.

● Let n = |P₁| + |P₂| + … + |Pₖ| be the total
length of all the pattern strings.

● Let Lmax be the length of the longest pattern
string.

● Assume that strings are drawn from an
alphabet Σ, where |Σ| is some constant.

● We'll use these terms when talking about the
runtime of the algorithms and data structures
we'll explore over the next couple of days.

How quickly can we solve the string
searching problem?

Let's start with a naïve approach.

a t

a t e

a b

a b o

b e

b e d

e d g

g

Pattern Strings

a b e d g e t

e

e t

u t

a b

 For each position in T:
 For each pattern string Pᵢ:

 Check if Pᵢ appears at that position.

 For each position in T:
 For each pattern string Pᵢ:

 Check if Pᵢ appears at that position.

Analyzing Our Approach

● As before, let m be the length of the text
and n the total length of the pattern
strings.

● For each character of the text string T, in
the worst case, we scan over all n total
characters in the patterns.

● Time complexity: O(mn).
● Is this a tight bound?

Θ(mn)

a

a

Pattern Strings

a a a a a a a aa

a a

a a a a

a

Can we do better?

a t

a t e

a b

a b o

b e

b e d

e d g

g

Pattern Strings

a b e d g e t

e

e t

u t

Parallel Searching

● Idea: Rather than searching the pattern
strings in serial, try searching them in
parallel.

● Intuitively, this should cut down on a lot
of the unnecessary rescanning that we're
doing.

● Challenge: How exactly do we do this in
practice?

a t

a t e

a b

a b o

b e

b e d

e d g

g

Pattern Strings

e

e t

u t

a

b

o

u

t

t

e

b

e

d

 e

 d

 g

 e

g

 e

 t

This data structure is called
a trie. It comes from the
word retrieval. It is not

pronounced like “retrieval.”

This data structure is called
a trie. It comes from the
word retrieval. It is not

pronounced like “retrieval.”

Representing Tries

● Each trie node needs to
store pointers to its
children.

● There are many different
data structures we could
use to store these pointers.

● For today, we'll assume we
have an array of |Σ|
pointers, one per possible
child.

● You'll explore variants on
this strategy in the
problem set.

a

c

 t

Representing Tries

● Each trie node needs to
store pointers to its
children.

● There are many different
data structures we could
use to store these pointers.

● For today, we'll assume we
have an array of |Σ|
pointers, one per possible
child.

● You'll explore variants on
this strategy in the
problem set.

a t

a t e

a b

a b o

b e

b e d

e d g

g

Pattern Strings

e

e t

u t

a

b

o

u

t

t

e

b

e

d

 e

 d

 g

 e

g

 e

 t

a b e d g e t

Analyzing our New Algorithm

● Let's suppose we've already constructed the trie.
How much work is required to perform the match?

● For each character of T, we inspect as most as many
characters as exist in the deepest branch of the trie.

● Time complexity: O(mLmax), where Lmax is the length
of the longest pattern string. (Do you see why?)

● In the (reasonable) case where Lmax is much smaller
than n, this is a huge win over before. If Lmax is
“objectively” small, this is a pretty good runtime.

● How much time does it take to build the trie?

Building a Trie

● Claim: Given a set of strings P₁, …, Pₖ of
total length n, it's possible to build a trie
for those strings in time Θ(n).

a t e

a n

a t e

n

a t

b e
b e

Our Strategies

● Following our foray into RMQ, we'll say that a
solution to multi-string matching runs in time
⟨p(m, n), q(m, n)⟩ if the preprocessing time is
p(m, n) and the matching time is q(m, n).

● We now have two approaches:
● No preprocessing: ⟨O(1), O(mn)⟩.
● Trie searching: ⟨O(n), O(mLmax)⟩.

● Can we do better?

a r

s o a

Pattern Strings

t
a

r

o a r s

tr

s o a

o a r s

r

t

a t

s o a r s

a r

s o a

Pattern Strings

t
a

r

o a r s

tr

s o a

o a r s

r

t

a t

s o a r s

a r

s o a

Pattern Strings

t
a

r

o a r s

tr

s o a

o a r s

r

t

a t

s o a r s
This red link is called a suffix

link. We'll talk about them
more formally in a minute.

This red link is called a suffix
link. We'll talk about them
more formally in a minute.

a r

s o a

Pattern Strings

t
a

r

o a r s

tr

s o a

o a r s

r

t

a t

s o a t

a r

s o a

Pattern Strings

t
a

r

o a r s

tr

s o a

o a r s

r

t

a t

s o a t

a r

s o a

Pattern Strings

t
a

r

o a r s

tr

s o a

o a r s

r

t

a t

s o a t

a r

s o a

Pattern Strings

t
a

r

o a r s

tr

s o a

o a r s

r

t

a t

s o a t

a r

s o a

Pattern Strings

t
a

r

o a r s

tr

s o a

o a r s

r

t

a t

s o a r s o a r s
In general, suffix links might jump the

red cursor forward more than one step.
The number of steps taken is equal to

the change of depth in the trie.

In general, suffix links might jump the
red cursor forward more than one step.
The number of steps taken is equal to

the change of depth in the trie.

a r

s o a

Pattern Strings

t
a

r

o a r s

tr

s o a

o a r s

r

t

a t

s o t a t

a r

s o a

Pattern Strings

t
a

r

o a r s

tr

s o a

o a r s

r

t

a t

s o t a t

Suffix Links

● A suffix link (sometimes called a failure link) is
a red edge from a trie node corresponding to
string α to the trie node corresponding to a string
ω such that ω is the longest proper suffix of α that
is still in the trie.

● Intuition: When we hit a part of the string where
we cannot continue to read characters, we fall
back by following suffix links to try to preserve as
much context as possible.

● Every node in the trie, except the root (which
corresponds to the empty string ε), will have a
suffix link associated with it.

Why Suffix Links Matter

● Suffix links can substantially improve the performance
of our string search.

● At each step, we either
● advance the black (end) pointer forward in the trie, or
● advance the red (start) pointer forward.

● Each pointer can advance forward at most O(m) times.
● This reduces the amount of time spent scanning

characters from O(mLmax) down to Θ(m).

● This is only useful if we can compute suffix links
quickly... which we'll see how to do later.

A Problem with our Optimization

i n

n

s t

t

i n

s

Pattern Strings

t i n

i

t i n g

i

n gi

s t i n g

What Happened?

● Our heavily optimized string searcher no
longer starts searching from each
position in the string.

● As a result, we now might forget to
output matches in certain cases.

● We need to figure out
● when this happens, and
● how to correct for it.

i n

n

s t

t

i n

s

Pattern Strings

t i n

i

t i n g

i

n gi

s t i n g We missed the pattern string i
because it's a proper suffix sti.

We missed the pattern string i
because it's a proper suffix sti.

i n

n

s t

t

i n

s

Pattern Strings

t i n

i

t i n g

i

n gi

s t i n g We missed both tin and in
because each is a proper

suffix of stin.

We missed both tin and in
because each is a proper

suffix of stin.

How do we address this?

i n

n

s t

t

i n

s

Pattern Strings

t i n

i

t i n g

i

n gi

This blue arrow is called an output
link. Whenever we visit this gold node,
we'll output the string represented by
the node at the end of the blue arrow.

This blue arrow is called an output
link. Whenever we visit this gold node,
we'll output the string represented by
the node at the end of the blue arrow.

i n

n

s t

t

i n

s

Pattern Strings

t i n

i

t i n g

i

n gi

By precomputing where we eventually
need to end up, we can instantly read
off any extra patterns to emit at this

point. As you'll see, we can
precompute these links really quickly!

By precomputing where we eventually
need to end up, we can instantly read
off any extra patterns to emit at this

point. As you'll see, we can
precompute these links really quickly!

i n

n

s t

t

i n

s

Pattern Strings

t i n

i

t i n g

i

n gi

Even nodes that themselves
correspond to are patterns might need
output links if other patterns also end

at the corresponding string.

Even nodes that themselves
correspond to are patterns might need
output links if other patterns also end

at the corresponding string.

i n

n

s t

t

i n

s

Pattern Strings

t i n

i

t i n g

i

n gi

Notice that the blue edges here form a
linked list. If we visit this node, we

need to output everything in the chain,
not just the “tin” node we're

immediately pointing at.

Notice that the blue edges here form a
linked list. If we visit this node, we

need to output everything in the chain,
not just the “tin” node we're

immediately pointing at.

The Final Matching Algorithm

● Start at the root node in the trie.
● For each character c in the string:

● While there is no edge labeled c:
– If you're at the root, break out of this loop.
– Otherwise, follow a suffix link.

● If there is an edge labeled c, follow it.
● If the current node corresponds to a pattern,

output that pattern.
● Output all words in the chain of output links

originating at this node.

The Runtime Impact

a aa

a a

a

Pattern Strings

a a a

a

a a a
a a a a a

a

a a a

The Runtime

● In the worst case, we may have to spend a huge amount of
time listing off all the matches in the string.

● This isn't the fault of the algorithm – any algorithm that
matches strings this way would have to spend the time
reporting matches.

● To account for this, let z denote the number of matches
reported by our algorithm.

● The runtime of the match phase is then Θ(m + z), with the
m term coming from the string scanning and the z term
coming from the matches.
● You sometimes hear algorithms whose runtime depends on how

much output is generated referred to as output-sensitive
algorithms.

Where We Are

● Given the matching automaton (which is
called an Aho-Corasick automaton or
an AC automaton), we can find all
occurrences of the pattern strings in any
text of length m in time Θ(m+z).

● To see whether this is worthwhile, we
need to see how quickly we can build the
automaton.

Time-Out for Announcements!

Problem Set One

● As a friendly reminder, Problem Set One is due this
Thursday at 3:00PM.
● All solutions must be submitted electronically through

GradeScope. We strongly recommend leaving a few hours'
buffer time so that you can get everything set up properly.

● If you haven't started yet... you probably should go
and do that. ☺

● We've got office hours throughout the week if you
have questions and you're welcome to ask questions
on Piazza.

● Stanford WiCS is hosting HackOverflow, a
hackathon for programmers of all skill levels. It's
coming up on Saturday, April 16 from 10AM –
10PM. Everyone is welcome!

● Highly recommended! If you've never been to a
hackathon before, this is one of the best places to
start.

● Want to attend? RSVP using this link.
● Want to volunteer at the event or serve as a

mentor? RSVP at this link.

HackOverflow

https://goo.gl/0rfWsA
https://docs.google.com/forms/d/18-wZgGeCx0Dyc_xFGMN73aYxGV1gvD9eAVvIUlQOTTY/viewform

oSTEM Mixer

● Stanford's chapter of oSTEM (Out in
STEM) is hosting a mixer event tomorrow,
April 6, at 6PM at the LGBT-CRC.

● Interested in attending? Want to get
involved in oSTEM leadership? Feel free
to stop on by! Everyone is welcome.

● If you'd like to RSVP, you can use this link.

https://docs.google.com/forms/d/1F0-Z8HIhBzTLb0Ij_f2DSNOtgbSRAkcngltw8FiT5iA/viewform

Back to CS166!

Building the Aho-Corasick Automaton

Building the Automaton

● To construct the Aho-Corasick automaton, we
need to
● construct the trie,
● construct suffix links, and
● construct output links.

● We know we can build the trie in time Θ(n)
using our logic from before.

● How quickly can we construct suffix and
output links?

Constructing Suffix Links

An Initial Algorithm

● Here is a simple, brute-force approach for
computing suffix links:
● For each node in the trie:

– Let α be the string that this particular node corresponds to.
– For each proper suffix ω of α:

● Look up ω in the trie.
● If the search ends up at some trie node, point the suffix link there

and stop.

● This approach is not very efficient – that doubly-
nested loop is exactly the sort of thing we're
trying to avoid.

● Can we do better?

o

e

s

o

t a

s

c

a t

s

Pattern Strings

e

c o a t

t

s

a

o

a t

t

a

Fast Suffix Link Construction

Constructing Suffix Links

● Key insight: Suppose we know the suffix link
for a node labeled w. After following a trie edge
labeled a, there are two possibilities.

● Case 1: xa exists.

w wa

x xa
a

a

w a

x a

Constructing Suffix Links

● Key insight: Suppose we know the suffix link
for a node labeled w. After following a trie edge
labeled a, there are two possibilities.

● Case 2: xa does not exist.

w wa

x

a

w a

x

y ay ya
a

Constructing Suffix Links

● Key insight: Suppose we know the suffix link
for a node labeled w. After following a trie edge
labeled a, there are two possibilities.

● Case 2: xa does not exist.

w wa

x

a w a

x

yy

z za
a z a

Constructing Suffix Links

● To construct the suffix link for a node wa:
● Follow w's suffix link to node x.
● If node xa exists, wa has a suffix link to xa.
● Otherwise, follow x's suffix link and repeat.
● If you need to follow backwards from the root, then wa's

suffix link points to the root.

● Observation 1: Suffix links point from longer
strings to shorter strings.

● Observation 2: If we precompute suffix links for
nodes in ascending order of string length, all of the
information needed for the above approach will be
available at the time we need it.

Constructing Suffix Links

● Do a breadth-first search of the trie, performing the
following operations:
● If the node is the root, it has no suffix link.
● If the node is one hop away from the root, its suffix link

points to the root.
● Otherwise, the node corresponds to some string wa.
● Let x be the node pointed at by w's suffix link. Then, do the

following:
– If the node xa exists, wa's suffix link points to xa.
– Otherwise, if x is the root node, wa's suffix link points to the root.
– Otherwise, set x to the node pointed at by x's suffix link and

repeat.

Analyzing Efficiency

● How much time does it take to actually build
all the suffix links?

● When filling in any individual suffix link, we
might have to keep walking backwards in the
trie following suffix links repeatedly while
searching for a place to extend.

● Intuitively, it seems like it should be quadratic
in the length of the longest string in the trie.

● Is that bound tight?

Analyzing Efficiency

● Claim: The previously-described
algorithm for computing suffix links
takes time O(n).

● Intuition: Focus on any one word in the
trie. As you add suffix links, keep track of
the depth of the node pointed at by the
current node's suffix link.

a

et

s

o

t a

o a t s

c

Construction Efficiency

● Focus on the time to fill in the suffix links for a single
pattern of length h.

● The gold node (where the previous suffix link points)
begins at the root. At each step, the gold node
● takes some number of steps backward, then
● takes at most one step forward.

● The gold node cannot take more steps backward than
forward. Therefore, across the entire construction,
the gold node takes at most h steps backward.

● Total time required to construct suffix links for a
pattern of length h: O(h).

● Total time required to construct all suffix links: O(n).

Computing Output Links

The Idea

● Some trie nodes represent strings that
have a pattern string as a proper suffix.

● Our goal is to introduce output links so
that, when these nodes are visited, the
automaton outputs all the suffixes that
end there.

Output Links, Formally

● The output link at a node corresponding to
a string w points to
● the node corresponding to the longest proper

suffix of w that is a pattern, or
● null if no such suffix exists.

● By always pointing to the node
corresponding to the longest such word,
we ensure that we chain together all the
patterns using output links.

i n

n

s t

t

i n

s

Pattern Strings

t i n

i

t i n g

i

n gi

We want the gold node to point to the first node reachable
by suffix links that's also a pattern.

The blue node (at the end of the suffix link) isn't a pattern,
but it knows where the first pattern is. We set the gold
node's output link to equal the blue node's output link.

We want the gold node to point to the first node reachable
by suffix links that's also a pattern.

The blue node (at the end of the suffix link) isn't a pattern,
but it knows where the first pattern is. We set the gold
node's output link to equal the blue node's output link.

i n

n

s t

t

i n

s

Pattern Strings

t i n

i

t i n g

i

n gi

We have the gold node point to
the blue node because the blue

node corresponds to a word.

We have the gold node point to
the blue node because the blue

node corresponds to a word.

Filling In Output Links

● Initially, set every node's output link to be a
null pointer.

● While doing the BFS to fill in suffix links, set
the output link of the current node v as follows:
● Let u be the node pointed at by v's suffix link.
● If u corresponds to a pattern, set v's output link to u

itself.
● Otherwise, set v's output link to u's output link.

● Time complexity of building all output links:
O(n).

The Net Complexity

● Our preprocessing time is
● Θ(n) work to build the trie,
● O(n) work to fill in suffix links, and
● O(n) work to fill in output links.

● Total preprocessing time: Θ(n).

The Final Totals

● We now have a multi-string search data
structure with time complexity

⟨O(n), O(m + z)⟩.
● In other words, this is exceptionally good

in the case where there are a fixed set of
patterns and a variable string to search.

Where We're Going

● A powerful data structure called the
suffix tree lets us solve this problem in

⟨O(m), O(n + z)⟩.
● In other words, it excels when there's a

fixed string to search and a variable set
of patterns.

More to Explore

● There are a number of other approaches to solving this
problem, and there's often a large gap between theory and
practice!

● The Boyer-Moore algorithm searches for a single pattern
in a large text. It can actually run in sublinear time if the
string searched for isn't present, but runs in quadratic case
if a match exists.

● The Commentz-Waltz algorithm generalizes Boyer-Moore
for multiple strings and has similar time guarantees, but is
faster in practice.

● The Knuth-Morris-Pratt algorithm is a special case of the
Aho-Corasick algorithm when there is just one pattern.
You'll explore it on the upcoming problem set (after the TAs
confirm it's not too difficult to derive it. ☺)

Next Time

● Suffix Trees
● A highly versatile, flexible, powerful data

structure for string processing.

● Patricia Tries
● Shrinking down trie space usage.

● Applications of RMQ
● Getting some mileage out of Fischer-Heun.

