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String Data Structures

● Over the next few days, we're going to be 
exploring data structures specifically 
designed for string processing.

● These data structures and their variants 
are frequently used in practice



  

Looking Forward

● Today: Aho-Corasick Automata
● A fast data structure for string matching.

● Thursday: Suffix Trees
● An absurdly versatile string data structure.

● Tuesday: Suffix Arrays
● Suffix-tree like performance with array-like 

space usage.



  

String Searching



  

The String Searching Problem

● Consider the following problem:

Given a string T and k nonempty strings
P₁, …, Pₖ, find all occurrences of P₁, …, Pₖ 

in T.
● T is called the text string and P₁, …, Pₖ are 

called pattern strings.
● This problem was originally studied in the 

context of compiling indexes, but has found 
applications in computer security and 
computational genomics.  
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Some Terminology

● Let m = |T|, the length of the string to be 
searched.

● Let n = |P₁| + |P₂| + … + |Pₖ| be the total 
length of all the pattern strings.

● Let Lmax be the length of the longest pattern 
string.

● Assume that strings are drawn from an 
alphabet Σ, where |Σ| is some constant.

● We'll use these terms when talking about the 
runtime of the algorithms and data structures 
we'll explore over the next couple of days.



  

How quickly can we solve the string
searching problem?



  

Let's start with a naïve approach.
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  For each position in T:
  For each pattern string Pᵢ:

  Check if Pᵢ appears at that position.

  For each position in T:
  For each pattern string Pᵢ:

  Check if Pᵢ appears at that position.



  

Analyzing Our Approach

● As before, let m be the length of the text 
and n the total length of the pattern 
strings.

● For each character of the text string T, in 
the worst case, we scan over all n total 
characters in the patterns.

● Time complexity: O(mn).
● Is this a tight bound?
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Can we do better?
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Parallel Searching

● Idea: Rather than searching the pattern 
strings in serial, try searching them in 
parallel.

● Intuitively, this should cut down on a lot 
of the unnecessary rescanning that we're 
doing.

● Challenge: How exactly do we do this in 
practice?
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This data structure is called 
a trie. It comes from the 
word retrieval. It is not 

pronounced like “retrieval.”

This data structure is called 
a trie. It comes from the 
word retrieval. It is not 

pronounced like “retrieval.”



  

Representing Tries

● Each trie node needs to 
store pointers to its 
children. 

● There are many different 
data structures we could 
use to store these pointers.

● For today, we'll assume we 
have an array of |Σ| 
pointers, one per possible 
child.

● You'll explore variants on 
this strategy in the 
problem set.
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Analyzing our New Algorithm

● Let's suppose we've already constructed the trie. 
How much work is required to perform the match?

● For each character of T, we inspect as most as many 
characters as exist in the deepest branch of the trie.

● Time complexity: O(mLmax), where Lmax is the length 
of the longest pattern string. (Do you see why?)

● In the (reasonable) case where Lmax is much smaller 
than n, this is a huge win over before. If Lmax is 
“objectively” small, this is a pretty good runtime.

● How much time does it take to build the trie?



  

Building a Trie

● Claim: Given a set of strings P₁, …, Pₖ of 
total length n, it's possible to build a trie 
for those strings in time Θ(n). 
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Our Strategies

● Following our foray into RMQ, we'll say that a 
solution to multi-string matching runs in time 
⟨p(m, n), q(m, n)⟩ if the preprocessing time is 
p(m, n) and the matching time is q(m, n).

● We now have two approaches:
● No preprocessing: ⟨O(1), O(mn)⟩.
● Trie searching: ⟨O(n), O(mLmax)⟩.

● Can we do better?
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This red link is called a suffix 

link. We'll talk about them 
more formally in a minute.

This red link is called a suffix 
link. We'll talk about them 
more formally in a minute.
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In general, suffix links might jump the 

red cursor forward more than one step. 
The number of steps taken is equal to 

the change of depth in the trie.

In general, suffix links might jump the 
red cursor forward more than one step. 
The number of steps taken is equal to 

the change of depth in the trie.
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Suffix Links

● A suffix link (sometimes called a failure link) is 
a red edge from a trie node corresponding to 
string α to the trie node corresponding to a string 
ω such that ω is the longest proper suffix of α that 
is still in the trie.

● Intuition: When we hit a part of the string where 
we cannot continue to read characters, we fall 
back by following suffix links to try to preserve as 
much context as possible.

● Every node in the trie, except the root (which 
corresponds to the empty string ε), will have a 
suffix link associated with it.



  

Why Suffix Links Matter

● Suffix links can substantially improve the performance 
of our string search.

● At each step, we either
● advance the black (end) pointer forward in the trie, or
● advance the red (start) pointer forward.

● Each pointer can advance forward at most O(m) times.
● This reduces the amount of time spent scanning 

characters from O(mLmax) down to Θ(m).

● This is only useful if we can compute suffix links 
quickly... which we'll see how to do later.



  

A Problem with our Optimization
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What Happened?

● Our heavily optimized string searcher no 
longer starts searching from each 
position in the string.

● As a result, we now might forget to 
output matches in certain cases.

● We need to figure out
● when this happens, and
● how to correct for it.
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s t i n g We missed the pattern string i 
because it's a proper suffix  sti.

We missed the pattern string i 
because it's a proper suffix  sti.
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suffix of stin.

We missed both tin and in 
because each is a proper 

suffix of stin.



  

How do we address this?
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This blue arrow is called an output 
link. Whenever we visit this gold node, 
we'll output the string represented by 
the node at the end of the blue arrow.

This blue arrow is called an output 
link. Whenever we visit this gold node, 
we'll output the string represented by 
the node at the end of the blue arrow.
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By precomputing where we eventually 
need to end up, we can instantly read 
off any extra patterns to emit at this 

point. As you'll see, we can 
precompute these links really quickly!

By precomputing where we eventually 
need to end up, we can instantly read 
off any extra patterns to emit at this 

point. As you'll see, we can 
precompute these links really quickly!
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Even nodes that themselves 
correspond to are patterns might need 
output links if other patterns also end 

at the corresponding string.

Even nodes that themselves 
correspond to are patterns might need 
output links if other patterns also end 

at the corresponding string.
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Notice that the blue edges here form a 
linked list. If we visit this node, we 

need to output everything in the chain, 
not just the “tin” node we're 

immediately pointing at.

Notice that the blue edges here form a 
linked list. If we visit this node, we 

need to output everything in the chain, 
not just the “tin” node we're 

immediately pointing at.



  

The Final Matching Algorithm

● Start at the root node in the trie.
● For each character c in the string:

● While there is no edge labeled c:
– If you're at the root, break out of this loop.
– Otherwise, follow a suffix link.

● If there is an edge labeled c, follow it.
● If the current node corresponds to a pattern, 

output that pattern.
● Output all words in the chain of output links 

originating at this node.



  

The Runtime Impact
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The Runtime

● In the worst case, we may have to spend a huge amount of 
time listing off all the matches in the string.

● This isn't the fault of the algorithm – any algorithm that 
matches strings this way would have to spend the time 
reporting matches.

● To account for this, let z denote the number of matches 
reported by our algorithm.

● The runtime of the match phase is then Θ(m + z), with the 
m term coming from the string scanning and the z term 
coming from the matches.
● You sometimes hear algorithms whose runtime depends on how 

much output is generated referred to as output-sensitive 
algorithms.



  

Where We Are

● Given the matching automaton (which is 
called an Aho-Corasick automaton or 
an AC automaton), we can find all 
occurrences of the pattern strings in any 
text of length m in time Θ(m+z).

● To see whether this is worthwhile, we 
need to see how quickly we can build the 
automaton.



  

Time-Out for Announcements!



  

Problem Set One

● As a friendly reminder, Problem Set One is due this 
Thursday at 3:00PM.
● All solutions must be submitted electronically through 

GradeScope. We strongly recommend leaving a few hours' 
buffer time so that you can get everything set up properly.

● If you haven't started yet... you probably should go 
and do that. ☺

● We've got office hours throughout the week if you 
have questions and you're welcome to ask questions 
on Piazza.



  

● Stanford WiCS is hosting HackOverflow, a 
hackathon for programmers of all skill levels. It's 
coming up on Saturday, April 16 from 10AM – 
10PM. Everyone is welcome!

● Highly recommended! If you've never been to a 
hackathon before, this is one of the best places to 
start.

● Want to attend? RSVP using this link.
● Want to volunteer at the event or serve as a 

mentor? RSVP at this link.

HackOverflow

https://goo.gl/0rfWsA
https://docs.google.com/forms/d/18-wZgGeCx0Dyc_xFGMN73aYxGV1gvD9eAVvIUlQOTTY/viewform


  

oSTEM Mixer

● Stanford's chapter of oSTEM (Out in 
STEM) is hosting a mixer event tomorrow, 
April 6, at 6PM at the LGBT-CRC.

● Interested in attending? Want to get 
involved in oSTEM leadership? Feel free 
to stop on by! Everyone is welcome.

● If you'd like to RSVP, you can use this link.

https://docs.google.com/forms/d/1F0-Z8HIhBzTLb0Ij_f2DSNOtgbSRAkcngltw8FiT5iA/viewform


  

Back to CS166!



  

Building the Aho-Corasick Automaton



  

Building the Automaton

● To construct the Aho-Corasick automaton, we 
need to
● construct the trie,
● construct suffix links, and
● construct output links.

● We know we can build the trie in time Θ(n) 
using our logic from before.

● How quickly can we construct suffix and 
output links?



  

Constructing Suffix Links



  

An Initial Algorithm

● Here is a simple, brute-force approach for 
computing suffix links:
● For each node in the trie:

– Let α be the string that this particular node corresponds to.
– For each proper suffix ω of α:

● Look up ω in the trie.
● If the search ends up at some trie node, point the suffix link there 

and stop.

● This approach is not very efficient – that doubly-
nested loop is exactly the sort of thing we're 
trying to avoid.

● Can we do better?
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Fast Suffix Link Construction



  

Constructing Suffix Links

● Key insight: Suppose we know the suffix link 
for a node labeled w. After following a trie edge 
labeled a, there are two possibilities.

● Case 1: xa exists.

w wa

x xa
a

a

w a

x a



  

Constructing Suffix Links

● Key insight: Suppose we know the suffix link 
for a node labeled w. After following a trie edge 
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w wa

x

a

w a

x

y ay ya
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Constructing Suffix Links

● Key insight: Suppose we know the suffix link 
for a node labeled w. After following a trie edge 
labeled a, there are two possibilities.

● Case 2: xa does not exist.

w wa

x

a w a

x

yy

z za
a z a



  

Constructing Suffix Links

● To construct the suffix link for a node wa:
● Follow w's suffix link to node x.
● If node xa exists, wa has a suffix link to xa.
● Otherwise, follow x's suffix link and repeat.
● If you need to follow backwards from the root, then wa's 

suffix link points to the root.

● Observation 1: Suffix links point from longer 
strings to shorter strings.

● Observation 2: If we precompute suffix links for 
nodes in ascending order of string length, all of the 
information needed for the above approach will be 
available at the time we need it.



  

Constructing Suffix Links

● Do a breadth-first search of the trie, performing the 
following operations:
● If the node is the root, it has no suffix link.
● If the node is one hop away from the root, its suffix link 

points to the root.
● Otherwise, the node corresponds to some string wa.
● Let x be the node pointed at by w's suffix link. Then, do the 

following:
– If the node xa exists, wa's suffix link points to xa.
– Otherwise, if x is the root node, wa's suffix link points to the root.
– Otherwise, set x to the node pointed at by x's suffix link and 

repeat.



  

Analyzing Efficiency

● How much time does it take to actually build 
all the suffix links?

● When filling in any individual suffix link, we 
might have to keep walking backwards in the 
trie following suffix links repeatedly while 
searching for a place to extend.

● Intuitively, it seems like it should be quadratic 
in the length of the longest string in the trie.

● Is that bound tight?



  

Analyzing Efficiency

● Claim: The previously-described 
algorithm for computing suffix links 
takes time O(n).

● Intuition: Focus on any one word in the 
trie. As you add suffix links, keep track of 
the depth of the node pointed at by the 
current node's suffix link.
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Construction Efficiency

● Focus on the time to fill in the suffix links for a single 
pattern of length h.

● The gold node (where the previous suffix link points) 
begins at the root. At each step, the gold node
● takes some number of steps backward, then
● takes at most one step forward.

● The gold node cannot take more steps backward than 
forward. Therefore, across the entire construction, 
the gold node takes at most h steps backward.

● Total time required to construct suffix links for a 
pattern of length h: O(h).

● Total time required to construct all suffix links: O(n).



  

Computing Output Links



  

The Idea

● Some trie nodes represent strings that 
have a pattern string as a proper suffix.

● Our goal is to introduce output links so 
that, when these nodes are visited, the 
automaton outputs all the suffixes that 
end there.



  

Output Links, Formally

● The output link at a node corresponding to 
a string w points to
● the node corresponding to the longest proper 

suffix of w that is a pattern, or
● null if no such suffix exists.

● By always pointing to the node 
corresponding to the longest such word, 
we ensure that we chain together all the 
patterns using output links.
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We want the gold node to point to the first node reachable 
by suffix links that's also a pattern.

 

The blue node (at the end of the suffix link) isn't a pattern, 
but it knows where the first pattern is. We set the gold 
node's output link to equal the blue node's output link.

We want the gold node to point to the first node reachable 
by suffix links that's also a pattern.

 

The blue node (at the end of the suffix link) isn't a pattern, 
but it knows where the first pattern is. We set the gold 
node's output link to equal the blue node's output link.
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We have the gold node point to 
the blue node because the blue 

node corresponds to a word.

We have the gold node point to 
the blue node because the blue 

node corresponds to a word.



  

Filling In Output Links

● Initially, set every node's output link to be a 
null pointer.

● While doing the BFS to fill in suffix links, set 
the output link of the current node v as follows:
● Let u be the node pointed at by v's suffix link.
● If u corresponds to a pattern, set v's output link to u 

itself.
● Otherwise, set v's output link to u's output link.

● Time complexity of building all output links: 
O(n).



  

The Net Complexity

● Our preprocessing time is
● Θ(n) work to build the trie,
● O(n) work to fill in suffix links, and
● O(n) work to fill in output links.

● Total preprocessing time: Θ(n).



  

The Final Totals

● We now have a multi-string search data 
structure with time complexity

⟨O(n), O(m + z)⟩. 
● In other words, this is exceptionally good 

in the case where there are a fixed set of 
patterns and a variable string to search.



  

Where We're Going

● A powerful data structure called the 
suffix tree lets us solve this problem in

⟨O(m), O(n + z)⟩. 
● In other words, it excels when there's a 

fixed string to search and a variable set 
of patterns.



  

More to Explore

● There are a number of other approaches to solving this 
problem, and there's often a large gap between theory and 
practice!

● The Boyer-Moore algorithm searches for a single pattern 
in a large text. It can actually run in sublinear time if the 
string searched for isn't present, but runs in quadratic case 
if a match exists.

● The Commentz-Waltz algorithm generalizes Boyer-Moore 
for multiple strings and has similar time guarantees, but is 
faster in practice.

● The Knuth-Morris-Pratt algorithm is a special case of the 
Aho-Corasick algorithm when there is just one pattern. 
You'll explore it on the upcoming problem set (after the TAs 
confirm it's not too difficult to derive it. ☺)



  

Next Time

● Suffix Trees
● A highly versatile, flexible, powerful data 

structure for string processing.

● Patricia Tries
● Shrinking down trie space usage.

● Applications of RMQ
● Getting some mileage out of Fischer-Heun.


