Aho-Corasick algorithm

A keyword tree for P = {he, she, his, hers}:

Aho-Corasick algorithm

Add pattern labels
#{h, s}

O, e,

@@ {hers}
\ e @ {his}

(3)=(a)—=(5) {she}

Adding failing edges

 |[f currently at node g representing word L(q), find the longest
proper suffix of L(q) that is a prefix of some pattern, and go
to the node representing that prefix. Insert the labels of the
pointed node (if there is any) to node g’'s set of labels.

 Example: node g = 5, L(Qg) = she; longest proper suffix that is
a prefix of some pattern: “he”. Dashed edge to node g'=2

Aho-Corasick Algorithm

Add Failing Edges and Labels

7T {he} "

@—>.—>@ {hers}

_
- —_—
— — P— —_— L — —

Aho-Corasick Algorithm: Construction

What about a naive algorithm?

A better algorithm: intuition

Suppose we already know the failing edge from a
node w to X. If we follow a solid edge with label a,
there are two possibilities:

e Case 1: xa exists.

a

@a X a

A better algorithm: intuition

Suppose we already know the failing edge from a
node w to X. If we follow a solid edge with label a,
there are two possibilities:

e Case 2: xa does not exist.

-

a
:
Y

O

A better algorithm: intuition

Suppose we already know the failing edge from a
node w to X. If we follow a solid edge with label a,
there are two possibllities:

e Case 2: xa does not exist.

|
|
|
|
l
Y
(2)—+(za) 2 I8

Constructing failing edge for a node

e Jo construct the failing edge for a node wa:
* Follow w's failing edge to node X.
* |t node xa exists, wa has a failing edge to xa.
* Otherwise, follow x's failing edge and repeat.
* |f you need to follow all the way back to the roaot,
then wa’s tailing edge points to the root.

 (Observation 1: Failing edges point from longer strings to
shorter strings.

 Observation 2: It we precompute failing edges for nodes
in ascending order of string length, all of the information

needed for the above approach will be available at the
time we need |it.

Complexity

* Focus on the time to fill in the failing edges for a

single pattern of length n.

* The failing edges moves one-step backward because it

always points to a shorter string.

* The solid edges moves one-step forward.

* \We cannot take more steps backward than forward.
Therefore, across the entire construction, we can take at
most n steps backward for this pattern.

* Jotal time required to construct failing edges for a
pattern of length n: O(n).

* Jotal time required to construct failing edges for all k
patterns: O(kn).

A different approach: suffix tree

Build a tree from the text

Used if the text is expected to be the same
during several pattern queries

Tree building is O(m) where m is the size of the
text. This Iis preprocessing.

Given any pattern of length n, we can answer
if it occurs in text in O(n) time

Suffix tree = “modified” keyword tree of all
suffixes of text

Construct a suffix tree

Text: ATCATG

ATCATG

TCATG -
Keyword Suffix
suffixes Cﬁ:rrg ‘ Tree - Tree

I G ’//«‘\
(root)

/ \ N —
A 7 / ',, (v' ,“ r \\‘ ’/> _\Y'
3 / \ N | oo
o~ / y ™ - Al‘
g d O o T
0 s ba PG/ 1Y CATG
6 f 5 ’ / \ \
(, 7 / \
‘ Y 7~ o \
V¢ ./
l' II 4
[\C/ G
\ > /
ll I'

Suffix tree = Collapsed Keyword Tree on Suffixes

Similar to keyword trees, except
edges that form paths are
collapsed

- Each edge is labeled with a

substring of a text for less
space
- All internal edges have at least 1
two outgoing edges L TG
- Leaves labeled by the location O O O
of the suffix on the text. i c
O O

Text: ATCATG O

(a) Keyword tree (b) Suffix tree

Example: suffix keyword tree
0

add special terminal character $ to the end of T w\s
l Shortest
T: abaaba T$: abaaba$ " . A —r
suffix
Each path from root to leaf represents a ‘ " . ‘

suffix; each suffix is represented by some

path from root to leaf
0 C 0 0

B \S

Would this still be the case if we hadn't

added $? ‘ CD .

D

5P O
e

Longest suffix

Example: suffix keyword tree
0

Each path from root to leaf represents a

suffix; each suffix is represented by some
path from root to leaf . . .

T: abaaba

Would this still be the case if we hadn't
added $? No . ‘ .

-
-

Example: suffix keyword tree
(D

a p \§
How do we check whether astringSisa . (. .
substring of T? a o\ a
Note: Each of T’s substrings is spelled out . . “
along a path from the root. l.e., every S . \s
substring is a prefix of some suffix of T. . (o .
! L Neg - S=baa
Yes, it's a substring

Start at the root and follow the edges ‘ .
labeled with the characters of S , _

If we “fall off” the trie -- i.e. there is no . .

outgoing edge for next character of S, then
Sis not a substring of T

d
D

If we exhaust S without falling off, Sis a
substring of T

O
O

Example: suffix keyword tree
)

a p \$

How do we check whether a stringSisa (‘ . ‘
substring of T? afo \$ a
Note: Each of T's substrings is spelled out . . .
along a path from the root. l.e., every S a \$
substring is a prefix of some suffix of T. . C . ‘

B \S$:
Start at the root and follow the edges ‘ C) .
labeled with the characters of S .

If we “fall off” the trie - i.e. there is no - C))
outgoing edge for next character of §, then

. . B oo
Sis not a substring of T 1 > éb,aaba .
| Yes, it's a substring
==

If we exhaust S without falling off, Sis a

substring of T 6

Example: suffix keyword tree
(D

a p \$

How do we check whether a stringSis a . ‘. .
substring of T? a o \$:
Note: Each of T’s substrings is spelled out . . .
along a path from the root. l.e., every : : 2 \$
substring is a prefix of some suffix of T. . C) .

a a \$ D
Start at the root and follow the edges () . . CS\ i
labeled with the characters of S E L (Eobaabh

outgoing edge for next character of S, then
Sis not a substring of T

If we “fall off” the trie —i.e. there is no O . No, not a substring

If we exhaust S without falling off, Sis a
substringof T

d
D

Summary

e Keyword and suffix trees are used to find patterns in a
fext

 Keyword trees:
* Build keyword tree of patterns, and thread text

through it

* Usage: checking a set of patterns within various texts

e SL

ffix trees:
Build suffix tree of text, and thread patterns through it

Jsage: checking various patterns in the same text

