
Aho-Corasick algorithm

Aho-Corasick algorithm

Add pattern labels

• If currently at node q representing word L(q), find the longest
proper suffix of L(q) that is a prefix of some pattern, and go
to the node representing that prefix. Insert the labels of the
pointed node (if there is any) to node q’s set of labels.

• Example: node q = 5, L(q) = she; longest proper suffix that is
a prefix of some pattern: “he”. Dashed edge to node q’=2

Adding failing edges

Aho-Corasick Algorithm

Add Failing Edges and Labels

Aho-Corasick Algorithm: Construction

What about a naive algorithm?

Suppose we already know the failing edge from a
node w to x. If we follow a solid edge with label a,

there are two possibilities:

A better algorithm: intuition

Suppose we already know the failing edge from a
node w to x. If we follow a solid edge with label a,

there are two possibilities:

A better algorithm: intuition

Suppose we already know the failing edge from a
node w to x. If we follow a solid edge with label a,

there are two possibilities:

A better algorithm: intuition

Constructing failing edge for a node

• To construct the failing edge for a node wa:
• Follow w's failing edge to node x.
• If node xa exists, wa has a failing edge to xa.
• Otherwise, follow x's failing edge and repeat.
• If you need to follow all the way back to the root,

then wa’s failing edge points to the root.

• Observation 1: Failing edges point from longer strings to
shorter strings.

• Observation 2: If we precompute failing edges for nodes
in ascending order of string length, all of the information
needed for the above approach will be available at the
time we need it.

Complexity

• Focus on the time to fill in the failing edges for a
single pattern of length n.
• The failing edges moves one-step backward because it

always points to a shorter string.
• The solid edges moves one-step forward.
• We cannot take more steps backward than forward.

Therefore, across the entire construction, we can take at
most n steps backward for this pattern.

• Total time required to construct failing edges for a
pattern of length n: O(n).

• Total time required to construct failing edges for all k
patterns: O(kn).

• Build a tree from the text

• Used if the text is expected to be the same
during several pattern queries

• Tree building is O(m) where m is the size of the
text. This is preprocessing.

• Given any pattern of length n, we can answer
if it occurs in text in O(n) time

• Suffix tree = “modified” keyword tree of all
suffixes of text

A different approach: suffix tree

ATCATG
TCATG
CATG
ATG
TG
G

Keyword
Tree

Suffix
Tree

Construct a suffix tree

Text: ATCATG

suffixes

Similar to keyword trees, except
edges that form paths are
collapsed

• Each edge is labeled with a
substring of a text for less
space

• All internal edges have at least
two outgoing edges

• Leaves labeled by the location
of the suffix on the text.

Suffix tree = Collapsed Keyword Tree on Suffixes

Text: ATCATG

Example: suffix keyword tree

Example: suffix keyword tree

Example: suffix keyword tree

Example: suffix keyword tree

Example: suffix keyword tree

• Keyword and suffix trees are used to find patterns in a
text

• Keyword trees:
• Build keyword tree of patterns, and thread text

through it
• Usage: checking a set of patterns within various texts

• Suffix trees:
• Build suffix tree of text, and thread patterns through it
• Usage: checking various patterns in the same text

Summary

