
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320138488

Accelerating Johnson's All-Pairs Shortest Paths Algorithm on GPU

Conference Paper · September 2017

CITATIONS

0
READS

334

3 authors, including:

Some of the authors of this publication are also working on these related projects:

IRIS Towards Natural Interaction and Communication View project

Aflatoxin detection on Siirt pistachio species with hyperspectral imaging View project

Oğuzhan Taştan

Middle East Technical University

4 PUBLICATIONS 0 CITATIONS

SEE PROFILE

Alptekin Temizel

Middle East Technical University

73 PUBLICATIONS 596 CITATIONS

SEE PROFILE

All content following this page was uploaded by Oğuzhan Taştan on 02 October 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/320138488_Accelerating_Johnson%27s_All-Pairs_Shortest_Paths_Algorithm_on_GPU?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/320138488_Accelerating_Johnson%27s_All-Pairs_Shortest_Paths_Algorithm_on_GPU?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/IRIS-Towards-Natural-Interaction-and-Communication?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Aflatoxin-detection-on-Siirt-pistachio-species-with-hyperspectral-imaging?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oguzhan_Tastan?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oguzhan_Tastan?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Middle_East_Technical_University?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oguzhan_Tastan?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alptekin_Temizel?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alptekin_Temizel?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Middle_East_Technical_University?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alptekin_Temizel?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oguzhan_Tastan?enrichId=rgreq-fad746385475a3062decdcbad215f3b9-XXX&enrichSource=Y292ZXJQYWdlOzMyMDEzODQ4ODtBUzo1NDQ4MDcxNjE4NzIzODZAMTUwNjkwMzU1Nzc1MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Accelerating Johnson’s All-Pairs Shortest Paths Algorithm on GPU

Oğuzhan Taştan1, Oğul Can Eryüksel1, Alptekin Temizel2

1. Department of Computer Engineering

Middle East Technical University
{oguzhan.tastan,ogul.eryuksel}

@ceng.metu.edu.tr

2. Graduate School of Informatics

Middle East Technical University
atemizel@metu.edu.tr

Abstract
In graph theory finding shortest paths from each node to

all the others is a common problem, known as all-pairs

shortest path (APSP). However, it is challenging to process

large graphs containing hundreds of thousands nodes and

vertices in feasible time for real world applications. In this

paper, we present a parallel implementation of Johnson’s

algorithm, which solves APSP problem on recent GPU

architecture. Proposed algorithmic and architectural

optimizations results in more than 4.5 times speed up of all-

pairs shortest path calculation for large graphs with respect to

the CPU. The source code is publicly available at
https://github.com/ouzan19/JohnsonAlgoCUDA .

.

Keywords— CUDA, GPU, Johnson’s Algorithm, APSP,

Parallel Processing.

1. Introduction
In real world, many problems require computation of the

shortest paths, such as query processing in spatial databases

[1], Internet route planners [2], web searching [3], VLSI chip

layout [4], power allocation in wireless sensor networks [5],

and regenerative braking energy for railway vehicles [6].

 There are three main solutions to the all-pairs shortest

path problem. First of all, Dijkstra’s algorithm [7] solves

single source shortest path problem by updating the tentative

distances of the neighboring nodes according to the edge costs

starting from a source node with the time complexity of O (V2)

where V is the number of nodes in the graph. The improved

version of the algorithm [8] which exploits priority queue runs

in O (V log (V)). The approach can be used to solve the all-

pairs shortest path problem by applying Dijkstra’s algorithm

for each node in the graph which results in O (V2 log (V)).

 However, the algorithm runs with only positive weighted

edges. In order to handle the negative weighted graphs as in

[5] and [6], Floyd-Warshall [9] algorithm can be used. The

Floyd–Warshall algorithm compares all possible paths through

the graph between each pair of vertices with time complexity

of O(V3). An alternative to Floyd-Warshall algorithm is

Johnson’s algorithm [10] which reweights the edges of the

graph by using Bellman-Ford [11] algorithm so that no

negative weighted edge exists and then applies the Dijkstra’s

algorithm for each node. Thus, the time complexity of the

Johnson’s algorithm is O(VE + V2log(V)) where V is the

number of nodes and E is the number of edges in the graph.

Since the algorithms to solve shortest path problems are

computationally costly, the problem cannot be solved

sequentially in a feasible time for real-world problems having

large graph sizes. In order to overcome this problem, parallel

computing is required.

Some parallel implementations of shortest path algorithms

have been studied previously. Bader et al. [12] provided

parallel algorithm for shortest path problem by making use of

CRAY supercomputer. Crauser et al. [13] have implemented

PRAM version of Dijkstra’s algorithm. Although these

methods produce significantly good results, they make use of

expensive hardware.

 Another alternative is to use hardware accelerators such

as Graphic Processing Units (GPUs) which provide high

computational cost at low cost. GPUs have massively parallel

architectures and can be programmed with frameworks such

as CUDA [14] or OpenCL [15].

In this paper, we present three different parallel

implementations of Johnson’s all-pairs shortest path algorithm

on GPU. We compare these three implementations in terms of

their execution times performance and discuss the advantages

and disadvantages of the implementations.

The rest of the paper is organized as follows: related work

in parallel shortest path implementations are summarized in

Section 2. The CUDA programming model is presented in

Section 3. In Section 4, algorithmic overview is explained.

Two different parallel implementation of the algorithm is

given in Section 5. Experimental setup and results are

presented in Section 6 and concluding remarks are given in

Section 7.

2. Related Work
With the advance of general purpose GPU computing, the

massively parallel shortest path algorithms extensively studied

during last years. Harish et al. [16] implemented Floyd-

Warshall algorithm in CUDA by using V2 threads in each of V

iterations. Okuyama et al. [17] improved Harish’s method by

using the on-chip memories. Lund et al. [19] implemented the

algorithm with multi-stage CUDA kernels.

Dijkstra's algorithm and Bellman–Ford algorithm are two

well-known algorithms for solving the single-source shortest

path problem. Meyer et al. [20] implemented delta stepping

method to make Dijkstra’s algorithm parallel. Arranz et al.

[21] presented a method based on the technique proposed by

Crauser et al. [13]. Harish et al. [16] implemented the ijkstra’s

algorithm in CUDA. Singh et al. [22] implemented the

modified version of Dijsktra’s algorithm as node-based and

edge-based approach.

 Agarwal et al. [23] implemented parallel version of

Bellman-Ford algorithm by using two-flag approach which

finds those edges which should be relaxed at next iteration.

This reduces the number of iterations, thus the execution time.

However, there exists much branch divergence in the

implementation of kernels. Busato et al. [24] avoided this by

using queue data structure and also improves it by using edge

classification method, dynamic parallelism and dynamic

virtual warps technique.

Pogorilyy et al. [18] implemented the parallel Johnson’s

algorithm with delta stepping by formalizing it in terms of

Gluskov’s modified systems of algorithmic algebra.

https://github.com/ouzan19/JohnsonAlgoCUDA
https://www.wikiwand.com/en/Dijkstra%27s_algorithm
https://www.wikiwand.com/en/Bellman%E2%80%93Ford_algorithm

They handled the frontiers using a queue at the expense of

atomic operations. In this paper, apart from queue-based

approach, flag-based and prefix-based approaches have also

been implemented and discussed by exploiting advanced GPU

features to improve the performance. It includes parallel

implementations of both Bellman-Ford and Dijkstra’s

algorithm.

We have adopted the queue method and edge

classification optimization from Busato et al. [24].We have

implemented the parallel version of Dijkstra’s algorithm based

on Crauser et al. [10]. Different to the work of Arranz et al.

[21], we prevent branch divergence due to frontier flag usage

by using the proposed queue structure to keep track of frontier

nodes.

3. CUDA Overview
SPMD (Single Program Multiple Data) model of the GPU

allows the same sets of instructions of a program (kernel) to be

executed on different data items in parallel. GPU uses a large

number of light-weight threads which are mapped to the

different cores of the GPU. GPUs could be programmed using

established programming frameworks such as the popular

CUDA framework by NVIDIA [25].

NVIDIA GPUs have multiple SMs, which are composed

of multiple independent processing elements. GPUs have

multiple levels of memory for each processing element. A fast,

private register memory, shared memory which is accessible

to all processing elements in any SM, and global, constant and

texture memories which are present on device DRAM are

accessible to all processing elements of the GPU.

 In CUDA [26], the programmers define a set of

instructions under a device kernel function and these

instructions are executed by all threads on the GPU.A block is

a group of threads which can be assigned to cores under an

SM. Multiple threads can be assigned to a core and similarly

multiple blocks can be assigned to an SM and each thread gets

a unique thread ID in an SM. Blocks can be further grouped to

form a grid, where each block gets a unique Block ID. These

Thread IDs and Block IDs are used by a thread to uniquely

identify the data item on which it is supposed to work.

4. Johnson’s Algorithm
The Johnson’s algorithm includes three main steps. In the

first step, an extra node, called q, is added to the graph with

zero weighted edges to all other existing nodes. Then, the

shortest path from q to all other nodes is calculated by the

modified version of Bellman-Ford algorithm [11]. In the

second step, the costs of the edges are re-weighted by using

the costs of the shortest path calculated in the first step. Then,

in the last stage, the extra node is removed from the re-

weighted graph and Dijkstra's algorithm [7] is used to find the

shortest paths from each node s to every other vertex in the re-

weighted graph.

The adjacency list representation is used to store the

graph. With adjacency lists, a graph G(E,V) represented as

follows: Vertices of graph are represented as array, say Va;

another array of adjacency list stores the edges with edges of

vertex i+1 immediately following the edges of vertex i for all i

in V. Each entry in the vertex array Va corresponds to starting

index of its adjacency list in the edge array Ea. Each entry of

the edge array Ea refers to a vertex in the vertex array Va

(Figure 2). With the help of this representation, when

processing nodes in parallel, we can have coalesced access to

the adjacencies of a node in the graph.

Figure 2: Graph representation with vertex list pointing to

a packed edge list (adapted from [16])

4.1 Bellman-Ford Algorithm

The Bellman-Ford algorithm first initializes the distance to

the source to 0 and all other nodes to infinity. Then, relaxing

operation is performed for each edge V times, where V is the

number of vertices in the graph. The relax operation for an

edge from u to v with the weight w is follows:

if distance[u] + w < distance[v]:

 distance[v] := distance[u] + w

 predecessor[v] := u

We use the modified version of the algorithm [24] with

two modifications: active vertices and edge classification. The

active vertices approach is based on the idea that the vertices

whose cost value has not been updated in previous iteration

are ignored in the current iteration. This is achieved by using a

queue structure and decreases the number of relax operations,

thus the execution time diminished.

In edge classification approach, the edges are classified

into four categories and processed differently to decrease the

number of relax operations. The categories are as follows:

Self-loop edge class includes the edges whose both ends are

the same vertices. There is no need to relax these edges.

Source edge class includes the edges which are the source

edges. For this kind of edges, relax operation is replaced by

direct update by cost of source vertices.

In-degree edge class includes the edges whose in-degree is

equal to 1. Since these kinds of edges are visited only once,

there is no need for atomic operations

Out-degree edge class includes the edges whose out degree is

equal to zero. These edges are ignored during algorithm

iterations and assigned at the end of the algorithm without

using atomic operations.

The pseudo-code for the modified version of Bellman-

Ford algorithm is shown in Algorithm 1.

4.2 Reweigthing

In this step, the weights of the edges are modified using

the values calculated in the previous step. An edge, from u to v

with weight w, is updated by w+h(u) –h(v) where h(.) function

gives the cost of the shortest path between q and the given

vertices, which was calculated in the previous step. This step

is required to convert negative-weighted graph into

nonnegative-weighted graph so that the Dijkstra's algorithm

can run in the next step.

4.3 Dijkstra’s Shortest Path Algorithm

The Dijkstra’s algorithm first initializes the distance to the

source to 0 and all other nodes to infinity. Then, it creates two

sets, one is called visited and the other one is unvisited and

marks the source node as visited. Starting from current node;

for all neighbors in the unvisited set, it performs relax

operation. When all neighbors of the current node are done, it

marks the current node as visited and deletes it from unvisited

set. Then, a node is selected from the unvisited set as the

current node and the relaxation process is repeated. The

algorithm finishes when the unvisited set has no element.

Algorithm 1: Pseudo code for optimized sequential Bellman-

Ford algorithm [24]

5. Parallel Implementations of the Algorithm
In this work, we have implemented three different

versions of parallel Johnson’s algorithm. The difference

between versions is the way of keeping track of frontier

vertices in the Dijkstra part of the algorithm. One of them,

called flag-based, uses a Boolean array which stores a Boolean

value, which indicates whether the node is frontier or not, for

each node in the graph. The second, called Q-based, puts the

frontiers into a queue using atomic operations. And the other,

called prefix-based, puts the frontiers into queue using prefix

sum. The first two steps of the versions are common.

5.1 Parallel Bellman-Ford Algorithm

In the algorithm, each edge can be processed independent

of others; therefore, they can be processed in parallel. One

thread will be assigned to each edge and all threads are

synchronized, and then the next iteration begins. Main kernel

for Bellman-Ford algorithm is as in the Algorithm 2. Each

thread is responsible for one vertex and each vertex first

initialize the corresponding index of node weight array, then

all threads other than the first terminates. The first thread

controls the main algorithm. It first put the source node into

the queue, and then relaxes the nodes in the queue by calling

another kernel which is shown in the Algorithm 4. This child

kernel simultaneously extracts the nodes from queue, relaxes

them and puts the updated ones into another queue. Then,

main kernel swaps the queues, and repeats the process until

the queue is empty.

The update and enqueue operation in the relax kernel

should be atomic because many threads try to update the same

queue and the same node.

Since the nodes have different number of adjacent

vertices, the fair work load balancing may not be achieved

during the algorithm if the adjacent vertices are processed in a

sequential manner in a kernel. Instead, we exploit the dynamic

parallelism feature of Maxwell architecture which allows

dynamically creating threads at run time without the need of

kernel returns [27]. Thanks to this feature, we can invoke a

child kernel which relaxes adjacencies of the node in the main

kernel; therefore, all adjacent nodes in the main kernel are

processed simultaneously which results in fair work load.

Algorithm 2: Pseudo kernel for Bellman-Ford. V represents the

node weight array, E represents the edge costs, s is the source

node, F1 and F2 are the queues. ENQUEUE function puts the

given node into given queue.

5.2 Reweigthing

In this step, all edge costs are updated completely

independent of each other’s. Each thread is responsible from

one node. Each thread updates the costs of out-going edges of

corresponding node by using the node weights calculated by

Bellman-Ford algorithm in previous step according to the

formula given in previous section as shown in Algorithm 3.

Algorithm 3: Reweighting kernel.

5.3 Parallel Dijkstra Algorithm

Unlike Bellman-Ford algorithm, it is not straight forward

to parallelize Dijkstra’s algorithm because of its sequential

nature. Although there can be different approaches, we

parallelize the inner operations of the Dijsktra’s algorithm. At

outer loop, the algorithm chooses a node to compute new

distance values. Inner operations relax outgoing edge values to

update node labels. If we can select frontier nodes that can be

updated separately without affecting the correctness of the

algorithm, the algorithm can be parallelized efficiently. The

method to define the frontier set is explained in [21].

At each iteration of Dijkstra’s algorithm, we need to

identify the nodes which will be inserted into the frontier set,

then we can relax those nodes in parallel. Crauser et al [13]

defined an algorithm that augments the frontier set with nodes

with bigger tentative distance. At each iteration i, algorithm

for each node of the unsettled set, u ∈ 𝑈𝑖, the sum of; its

tentative distance and the minimum of the cost of its outgoing

edges. Then, it chooses the minimum of those values. Finally,

those nodes, whose tentative distance are lower or equal than

the minimum value, are inserted into the frontier set. The

process repeated until the threshold reaches infinity as shown

in Algorithm 5.

Algorithm 4: Pseudo kernel for relax operation. DEQUEUE

function extracts from given queue corresponding to given

index. ADJ function returns the neighbors of the given node.

All other variables are the same with Algorithm 2.

Arranz et al. [21], describe a modified version of method

of Crauser et al. They introduce a new concept of 𝛥𝑖 as the

limit value computed in each iteration i that holds any

unsettled node u with its node weight less than 𝛥𝑖 can be

settled safely. Their method proceeds as follows: First, for

each node in graph, the algorithm calculates minimum edge

cost among its outgoing edges. Second, for each iteration i of

the external loop, having all tentative distances of the nodes on

the unsettled set, it calculates a threshold value that is the

minimum value of sum of node weight and corresponding

value calculated in the first step among the unsettled nodes.

Finally, it possible to put into the frontier set every node

whose node weight is greater than the threshold value

calculated in previous step.

Minimum function called in main kernel is the modified

version of the advanced reduce3 method of CUDA SDK [28]

in order to calculate the threshold value. The update function

is shown in the Algorithm 7.

The problem with this implementation is that the flags of

the nodes in the frontier set are not in consecutive locations in

the flag array and this causes branch divergence. In order to

avoid branch divergence, we have embedded the idea of

frontier propagation using queue data structure, as in the

parallel Bellman-Ford algorithm, into the parallel Dijkstra’s

algorithm. To implement queue in GPU, we use two different

approaches, namely Q-based and prefix-based approaches.

In the main part of Q-based approach, instead of setting

the frontier flag of the source node, it is put into the queue.

The relax and update kernel of Q-based parallel Dijkstra’s

algorithm is shown in Algorithm 8 and Algorithm 9

respectively. The cost of this modification to the flag-based

algorithm is the atomic operations when queue is being filled.

Although it gets rid of the branch divergence significantly, all

threads needs to update the queue sequentially in order to

avoid race conditions. The time performance comparison of

two approaches is presented in the Section 6.

Algorithm 5: Pseudo kernel for main algorithm of flag-based

Dijkstra. V represents the node weight array, E represents the

edge costs, s is the source node, U is the unsettled flag array, F

is the frontier flag array, Δ is the threshold value.

Algorithm 6: Pseudo kernel for relax operation in flag-based

Dijkstra. ADJ function returns the neighbors of the given

node. The other variables are the same with Algorithm 5.

Algorithm 7: Pseudo kernel for update function of flag-based

Dijkstra. The variables are the same with Algorithms 5 and 6.

In prefix-based approach, the elements are added into the

queue by indexes which is previously calculated using prefix

sum at the start of each iteration. Thus, there is no need for

atomic operations (when filling queue) since the indexes are

pre-defined. However, computation cost of the prefix sum is

introduced in this method. The update kernel of prefix-based

algorithm is shown in Algorithm 10 and the relax kernel is the

same with that of Q-based approach.

Algorithm 8: Pseudo kernel for relax operation of Q-based

parallel Dijkstra. Q is the queue data structure. All other

parameters are the same with Algorithm 5.

Algorithm 9: Pseudo kernel for update function of Q-based

Dijkstra.

Algorithm 10: Pseudo kernel for update function of prefix-

based Dijkstra.

To extend the single source parallel Dijkstra’s algorithm

to the all-pairs shortest path algorithm, we have simply

applied the algorithm for each node in the graph.

6. Experimental Setup and Results
The experiments have been conducted on 64-bit Windows

10 Pro operating system with Intel Core i7-6700K CPU

@4.00 GHz and 16GB DDR4 RAM. The GPU used is

NVIDIA GeForce GTX 960. The dataset used in the

experiments is composed of eight graphs with different

number of nodes and edges (Table 1).

In this work, we compare four different implementation of

Johnson’s all-pairs shortest path algorithm in terms of

execution time with given dataset, namely sequential, flag-

based parallel implementation, Q-based parallel

implementation and prefix-based parallel implementation. The

execution times are shown in Figure 3.

Additionally, speed-up rates of different methods are

shown in Figure 4. It is observed that Q-based approach

provides higher speed-up than flag-based approach for all

graphs. This is clearly caused by the fact that branch

divergence has more severe drawbacks than atomic operations

have. On the other hand, prefix-based approach, which is

expected to be faster, has less speed-up than the other

approaches. This is caused by the low input size with respect

to the graphs in [24]. We could not supply higher sized inputs

because of memory constraint in GPU since the problem is all-

to-all shortest path. Q-based approach can speed up the

Johnson’s algorithm more than 4.5 times.

In Figure 3, it can be clearly seen that, larger graphs are

needed to benefit from the parallel GPU implementation.

While there is no significant advantage is observed until

number of edges is around 150000, GPU implementation has

lower execution time with larger graphs.

Table 1: Properties of the graphs used in the experiments

Graph # of nodes # of edges

Graph1 [29] 6301 20777

Graph2 [29] 36682 88328

Graph3 [29] 62586 147892

Graph4 [30] 58228 428156

Graph5 [31] 75879 508837

Graph6 [32] 77360 905468

Graph7 [33] 265214 420045

Graph8 [32] 82168 948464

 Figure 3: Execution times on different graphs.

Figure 4: Speed-up rates on different graphs.

7. Conclusions and Discussion

 In this paper, we proposed an efficient GPU

implementation of Johnson’s all-pairs shortest path algorithm.

The dominant part of Johnson’s algorithm is Dijkstra’s part

and in this part we combined queue-based approach from

Busato et al. [24] and Δ- stepping approach from Crauser et al.

[13] in order to make Dijkstra’s algorithm parallel by avoiding

branch divergence. The results show that although the

proposed method suffers from atomic operations, it is more

efficient than the flag-based methods due to lack of branch

divergence. However, as the input size increases, the

performances difference between the two gets smaller.

The proposed method can be preferable when the input

graph is negative-weighted because Dijsktra’s algorithm

cannot run with negative-weighted graphs. In addition, it can

be more efficient than Floyd-Warshall algorithm if the input

graph is sparse.

As a future work, the performance comparison between

proposed method and GPU implementation of Floyd-Warshall

algorithm can be done.

8. References
[1] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query

processing in spatial network databases,” in VLDB’03. Berlin:

VLDB Endowment,2003,pp.802–813.[Online].Available:

http://dl.acm.org/citation.cfm?id=1315451.1315520

[2] Rétvári, G., Bíró, J. J., & Cinkler, T. (2007). On shortest

path representation. IEEE/ACM Trans. Netw., 15(6), 1293-1306.

[3] Barrett, C., Jacob, R., & Marathe, M. (2000). Formal-

language-constrained path problems. SIAM Journal on

Computing, 30(3), 809-837.

[4] Ashok Jagannathan. Applications of Shortest Path

Algorithms to VLSI Chip Layout Problems. Thesis Report.

University of Illinois. Chicago. 2000.

[5] Zhang, X., Yan, F., Tao, L., & Sung, D. K. (2014, August).

Optimal candidate set for opportunistic routing in

asynchronous wireless sensor networks. In Computer

Communication and Networks (ICCCN), 2014 23rd

International Conference on (pp. 1-8). IEEE.

[6] S. Klamt and A. von Kamp, “Computing paths and cycles

in biological interaction graphs,” BMC Bioinformatics, vol.

10, no. 6, pp. 1–11, 2014.

[7] Dijkstra, E. W. (1959). "A note on two problems in

connexion with graphs", Numerische Mathematik 1: 269–271.

doi:10.1007/BF01386390.

[8] Fredman, Michael Lawrence; Tarjan, Robert E. (1984).

Fibonacci heaps and their uses in improved network

optimization algorithms. 25th Annual Symposium on

Foundations of Computer Science. IEEE. pp. 338–346.

doi:10.1109/SFCS.1984.715934

[9] Floyd, Robert W. (June 1962). "Algorithm 97: Shortest

Path". Communications of the ACM 5 (6): 345.

doi:10.1145/367766.368168.

[10] Johnson, Donald B. (1977), "Efficient algorithms for

shortest paths in sparse networks", Journal of the ACM 24 (1):

1–13, doi:10.1145/321992.321993

[11] Bellman, Richard (1958). "On a routing problem".

Quarterly of Applied Mathematics 16: 87–90. MR 0102435

 [12] Bader, D. A., & Madduri, K. (2006, August). Parallel

algorithms for evaluating centrality indices in real-world

networks. In Parallel Processing, 2006. ICPP 2006.

International Conference on (pp. 539-550). IEEE.

 [13] Crauser A., Mehlhorn K., Meyer U., and Sanders P.

1998. A Parallelization of Dijkstra's Shortest Path Algorithm.

MFCS'98- LNCS 1450, Lubos Prim et al. (Eds.), Springer-

Verlag Berlin Heidelberg, pp. 722-731.

[14] NVIDIA CUDA: http://www.nvidia.com/cuda

[15] Khronos OpenCL : https://www.khronos.org/opencl

[16] Harish, P., & Narayanan, P. J. (2007, December).

Accelerating large graph algorithms on the GPU using CUDA.

In International Conference on High-Performance Computing

(pp. 197-208). Springer Berlin Heidelberg.

[17] T. Okuyama, F. Ino, and K. Hagihara, “A task

parallelalgorithm for finding all–pairs shortest paths using the

gpu,” International Journal of High Performance Computing

and Networking, vol. 7, no. 2, pp. 87–98, 2012.

[18] Pogorilyy, S. D., Slynko, M. S., & Rustamov, Y. I.

(2017). Research and development of Jonhson’s algorithm

parallel schemes in GPGPU technology. TWMS Journal of

Pure and Applied Mathematics, 8(1), 12-21.

[19] Lund, B. D. & Smith, J. W. (2010). A Multi-Stage CUDA

Kernel for Floyd-Warshall. CoRR, abs/1001.4108.

[20] U. Meyer and P. Sanders, “delta-stepping: a parallelizable

shortest path algorithm,” Journal of Algorithms, vol. 49, no. 1,

pp. 114–152, 2003.

[21] H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and

D. R. Llanos, “A New GPUbased Approach to the Shortest

Path Problem,” in The 2013 International Conference on High

Performance Computing & Simulation, (HPCS 2013), p. To

appear, 2013.

[22] D. P. Singh and N. Khare, “A study of different parallel

implementations of single source shortest path algorithms,”

International Journal of Computer Applications, vol. 54, no.

10, pp. 26–30, September 2012, published by Foundation of

Computer Science, New York, USA.

[23] P. Agarwal and M. Dutta, “New Approach of Bellman

Ford Algorithm on GPU using CUDA”, Int. Journal Computer

Applications, vol. 110, no. 13, pp. 11-15, January 2015.

[24] F. Busato and N. Bombieri, “An efficient implementation

of the Bellman-Ford algorithm for Kepler GPU architectures”,

IEEE Trans. Parallel Distrib. Syst., vol. pp, no.99, September

2015.

[25] J. Nickolls, I. Buck, M. Garland, and K. Skadron,

"Scalable Parallel Programming with CUDA," ACM Queue,

vol. 6, no. 2, pp. 40-53, 2008.

[26] NVIDIA Corporation, CUDA C programming guide

(2013),http://docs.nvidia.com/cuda/pdf/CUDA_C_Programmi

ng_Guide.pdf.

[27]http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html#cuda-dynamic-parallelism

[28] M. Harris, Optimizing Parallel Reduction in CUDA,

NVIDIA, 2008.

[29] M. Ripeanu and I. Foster and A. Iamnitchi. Mapping the

Gnutella Network: Properties of Large-Scale Peer-to-Peer

Systems and Implications for System Design. IEEE Internet

Computing Journal, 2002.

[30] Cho, E., Myers, S. A., & Leskovec, J. (2011, August).

Friendship and mobility: user movement in location-based

social networks. In Proceedings of the 17th ACM SIGKDD

international conference on Knowledge discovery and data

mining (pp. 1082-1090). ACM.

[31] Richardson, M., Agrawal, R., & Domingos, P. (2003,

October). Trust management for the semantic web.

In International semantic Web conference (pp. 351-368).

Springer Berlin Heidelberg.

[32] J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney.

Community Structure in Large Networks: Natural Cluster

Sizes and the Absence of Large Well-Defined Clusters.

Internet Mathematics 6(1) 29--123, 2009.

[33] Leskovec, J., Kleinberg, J., & Faloutsos, C. (2007). Graph

evolution: Densification and shrinking diameters. ACM

Transactions on Knowledge Discovery from Data

(TKDD), 1(1), 2.

View publication statsView publication stats

http://dl.acm.org/citation.cfm?id=1315451.1315520
http://www.nvidia.com/cuda
https://www.khronos.org/opencl
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.researchgate.net/publication/320138488

