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Abstract 
In graph theory finding shortest paths from each node to 

all the others is a common problem, known as all-pairs 

shortest path (APSP). However, it is challenging to process 

large graphs containing hundreds of thousands nodes and 

vertices in feasible time for real world applications. In this 

paper, we present a parallel implementation of Johnson’s 

algorithm, which solves APSP problem on recent GPU 

architecture. Proposed algorithmic and architectural 

optimizations results in more than 4.5 times speed up of all-

pairs shortest path calculation for large graphs with respect to 

the CPU. The source code is publicly available at 
https://github.com/ouzan19/JohnsonAlgoCUDA . 

.   

Keywords— CUDA, GPU, Johnson’s Algorithm, APSP, 

Parallel Processing. 

1. Introduction 
In real world, many problems require computation of the 

shortest paths, such as query processing in spatial databases 

[1], Internet route planners [2], web searching [3], VLSI chip 

layout [4], power allocation in wireless sensor networks [5], 

and regenerative braking energy for railway vehicles [6]. 

 There are three main solutions to the all-pairs shortest 

path problem. First of all, Dijkstra’s algorithm [7] solves 

single source shortest path problem by updating the tentative 

distances of the neighboring nodes according to the edge costs 

starting from a source node with the time complexity of O (V2) 

where V is the number of nodes in the graph. The improved 

version of the algorithm [8] which exploits priority queue runs 

in O (V log (V)). The approach can be used to solve the all-

pairs shortest path problem by applying Dijkstra’s algorithm 

for each node in the graph which results in O (V2 log (V)). 

 However, the algorithm runs with only positive weighted 

edges. In order to handle the negative weighted graphs as in 

[5] and [6], Floyd-Warshall [9] algorithm can be used. The 

Floyd–Warshall algorithm compares all possible paths through 

the graph between each pair of vertices with time complexity 

of O(V3). An alternative to Floyd-Warshall algorithm is 

Johnson’s algorithm [10] which reweights the edges of the 

graph by using Bellman-Ford [11] algorithm so that no 

negative weighted edge exists and then applies the Dijkstra’s 

algorithm for each node. Thus, the time complexity of the 

Johnson’s algorithm is O(VE + V2log(V)) where V is the 

number of nodes and E is the number of edges in the graph. 

Since the algorithms to solve shortest path problems are 

computationally costly, the problem cannot be solved 

sequentially in a feasible time for real-world problems having 

large graph sizes. In order to overcome this problem, parallel 

computing is required. 

Some parallel implementations of shortest path algorithms 

have been studied previously. Bader et al. [12] provided 

parallel algorithm for shortest path problem by making use of 

CRAY supercomputer. Crauser et al. [13] have implemented 

PRAM version of Dijkstra’s algorithm. Although these 

methods produce significantly good results, they make use of 

expensive hardware.  

 Another alternative is to use hardware accelerators such 

as Graphic Processing Units (GPUs) which provide high 

computational cost at low cost. GPUs have massively parallel 

architectures and can be programmed with frameworks such 

as CUDA [14] or OpenCL [15]. 

In this paper, we present three different parallel 

implementations of Johnson’s all-pairs shortest path algorithm 

on GPU. We compare these three implementations in terms of 

their execution times performance and discuss the advantages 

and disadvantages of the implementations.  

The rest of the paper is organized as follows: related work 

in parallel shortest path implementations are summarized in 

Section 2. The CUDA programming model is presented in 

Section 3. In Section 4, algorithmic overview is explained. 

Two different parallel implementation of the algorithm is 

given in Section 5. Experimental setup and results are 

presented in Section 6 and concluding remarks are given in 

Section 7.  

2. Related Work 
With the advance of general purpose GPU computing, the 

massively parallel shortest path algorithms extensively studied 

during last years. Harish et al. [16] implemented Floyd-

Warshall algorithm in CUDA by using V2 threads in each of V 

iterations. Okuyama et al. [17] improved Harish’s method by 

using the on-chip memories. Lund et al. [19] implemented the 

algorithm with multi-stage CUDA kernels. 

Dijkstra's algorithm and Bellman–Ford algorithm are two 

well-known algorithms for solving the single-source shortest 

path problem. Meyer et al. [20] implemented delta stepping 

method to make Dijkstra’s algorithm parallel. Arranz et al. 

[21] presented a method based on the technique proposed by 

Crauser et al. [13]. Harish et al. [16] implemented the ijkstra’s 

algorithm in CUDA. Singh et al. [22] implemented the 

modified version of Dijsktra’s algorithm as node-based and 

edge-based approach.  

 Agarwal et al. [23] implemented parallel version of 

Bellman-Ford algorithm by using two-flag approach which 

finds those edges which should be relaxed at next iteration. 

This reduces the number of iterations, thus the execution time. 

However, there exists much branch divergence in the 

implementation of kernels. Busato et al. [24] avoided this by 

using queue data structure and also improves it by using edge 

classification method, dynamic parallelism and dynamic 

virtual warps technique. 

Pogorilyy et al. [18] implemented the parallel Johnson’s 

algorithm with delta stepping by formalizing it in terms of 

Gluskov’s modified systems of algorithmic algebra.  

https://github.com/ouzan19/JohnsonAlgoCUDA
https://www.wikiwand.com/en/Dijkstra%27s_algorithm
https://www.wikiwand.com/en/Bellman%E2%80%93Ford_algorithm


 

They handled the frontiers using a queue at the expense of 

atomic operations. In this paper, apart from queue-based 

approach, flag-based and prefix-based approaches have also 

been implemented and discussed by exploiting advanced GPU 

features to improve the performance. It includes parallel 

implementations of both Bellman-Ford and Dijkstra’s 

algorithm. 

We have adopted the queue method and edge 

classification optimization from Busato et al. [24].We have 

implemented the parallel version of Dijkstra’s algorithm based 

on Crauser et al. [10]. Different to the work of Arranz et al. 

[21], we prevent branch divergence due to frontier flag usage 

by using the proposed queue structure to keep track of frontier 

nodes. 

3. CUDA Overview 
SPMD (Single Program Multiple Data) model of the GPU 

allows the same sets of instructions of a program (kernel) to be 

executed on different data items in parallel. GPU uses a large 

number of light-weight threads which are mapped to the 

different cores of the GPU. GPUs could be programmed using 

established programming frameworks such as the popular 

CUDA framework by NVIDIA [25]. 

NVIDIA GPUs have multiple SMs, which are composed 

of multiple independent processing elements. GPUs have 

multiple levels of memory for each processing element. A fast, 

private register memory, shared memory which is accessible 

to all processing elements in any SM, and global, constant and 

texture memories which are present on device DRAM are 

accessible to all processing elements of the GPU.  

  In CUDA [26], the programmers define a set of 

instructions under a device kernel function and these 

instructions are executed by all threads on the GPU.A block is 

a group of threads which can be assigned to cores under an 

SM. Multiple threads can be assigned to a core and similarly 

multiple blocks can be assigned to an SM and each thread gets 

a unique thread ID in an SM. Blocks can be further grouped to 

form a grid, where each block gets a unique Block ID. These 

Thread IDs and Block IDs are used by a thread to uniquely 

identify the data item on which it is supposed to work.  

4.   Johnson’s Algorithm 
The Johnson’s algorithm includes three main steps. In the 

first step, an extra node, called q, is added to the graph with 

zero weighted edges to all other existing nodes. Then, the 

shortest path from q to all other nodes is calculated by the 

modified version of Bellman-Ford algorithm [11]. In the 

second step, the costs of the edges are re-weighted by using 

the costs of the shortest path calculated in the first step. Then, 

in the last stage, the extra node is removed from the re-

weighted graph and Dijkstra's algorithm [7] is used to find the 

shortest paths from each node s to every other vertex in the re-

weighted graph. 

The adjacency list representation is used to store the 

graph. With adjacency lists, a graph G(E,V) represented as 

follows: Vertices of graph are represented as array, say Va; 

another array of adjacency list stores the edges with edges of 

vertex i+1 immediately following the edges of vertex i for all i 

in V. Each entry in the vertex array Va corresponds to starting 

index of its adjacency list in the edge array Ea. Each entry of 

the edge array Ea refers to a vertex in the vertex array Va 

(Figure 2). With the help of this representation, when 

processing nodes in parallel, we can have coalesced access to 

the adjacencies of a node in the graph. 

  

 
Figure 2: Graph representation with vertex list pointing to 

a packed edge list (adapted from [16]) 

4.1 Bellman-Ford Algorithm 

The Bellman-Ford algorithm first initializes the distance to 

the source to 0 and all other nodes to infinity. Then, relaxing 

operation is performed for each edge V times, where V is the 

number of vertices in the graph. The relax operation for an 

edge from u to v with the weight w is follows: 

if distance[u] + w < distance[v]: 

               distance[v] := distance[u] + w 

               predecessor[v] := u 

 

We use the modified version of the algorithm [24] with 

two modifications: active vertices and edge classification. The 

active vertices approach is based on the idea that the vertices 

whose cost value has not been updated in previous iteration 

are ignored in the current iteration. This is achieved by using a 

queue structure and decreases the number of relax operations, 

thus the execution time diminished.  

In edge classification approach, the edges are classified 

into four categories and processed differently to decrease the 

number of relax operations. The categories are as follows: 

Self-loop edge class includes the edges whose both ends are 

the same vertices. There is no need to relax these edges. 

Source edge class includes the edges which are the source 

edges. For this kind of edges, relax operation is replaced by 

direct update by cost of source vertices. 

In-degree edge class includes the edges whose in-degree is 

equal to 1. Since these kinds of edges are visited only once, 

there is no need for atomic operations 

Out-degree edge class includes the edges whose out degree is 

equal to zero. These edges are ignored during algorithm 

iterations and assigned at the end of the algorithm without 

using atomic operations. 

The pseudo-code for the modified version of Bellman-

Ford algorithm is shown in Algorithm 1. 

4.2 Reweigthing 

In this step, the weights of the edges are modified using 

the values calculated in the previous step. An edge, from u to v 

with weight w, is updated by w+h(u) –h(v) where h(.) function 

gives the cost of the shortest path between q and the given 

vertices, which was calculated in the previous step. This step 

is required to convert negative-weighted graph into 

nonnegative-weighted graph so that the Dijkstra's algorithm 

can run in the next step. 

4.3 Dijkstra’s Shortest Path Algorithm 

The Dijkstra’s algorithm first initializes the distance to the 

source to 0 and all other nodes to infinity. Then, it creates two 

sets, one is called visited and the other one is unvisited and 



 

marks the source node as visited. Starting from current node; 

for all neighbors in the unvisited set, it performs relax 

operation. When all neighbors of the current node are done, it 

marks the current node as visited and deletes it from unvisited 

set. Then, a node is selected from the unvisited set as the 

current node and the relaxation process is repeated. The 

algorithm finishes when the unvisited set has no element.  

 

 
Algorithm 1: Pseudo code for optimized sequential Bellman-

Ford algorithm [24] 

5. Parallel Implementations of the Algorithm 
In this work, we have implemented three different 

versions of parallel Johnson’s algorithm. The difference 

between versions is the way of keeping track of frontier 

vertices in the Dijkstra part of the algorithm. One of them, 

called flag-based, uses a Boolean array which stores a Boolean 

value, which indicates whether the node is frontier or not, for 

each node in the graph. The second, called Q-based, puts the 

frontiers into a queue using atomic operations. And the other, 

called prefix-based, puts the frontiers into queue using prefix 

sum. The first two steps of the versions are common. 

 

5.1 Parallel Bellman-Ford Algorithm 

In the algorithm, each edge can be processed independent 

of others; therefore, they can be processed in parallel. One 

thread will be assigned to each edge and all threads are 

synchronized, and then the next iteration begins. Main kernel 

for Bellman-Ford algorithm is as in the Algorithm 2. Each 

thread is responsible for one vertex and each vertex first 

initialize the corresponding index of node weight array, then 

all threads other than the first terminates. The first thread 

controls the main algorithm. It first put the source node into 

the queue, and then relaxes the nodes in the queue by calling 

another kernel which is shown in the Algorithm 4. This child 

kernel simultaneously extracts the nodes from queue, relaxes 

them and puts the updated ones into another queue. Then, 

main kernel swaps the queues, and repeats the process until 

the queue is empty.  

The update and enqueue operation in the relax kernel 

should be atomic because many threads try to update the same 

queue and the same node. 

Since the nodes have different number of adjacent 

vertices, the fair work load balancing may not be achieved 

during the algorithm if the adjacent vertices are processed in a 

sequential manner in a kernel. Instead, we exploit the dynamic 

parallelism feature of Maxwell architecture which allows 

dynamically creating threads at run time without the need of 

kernel returns [27]. Thanks to this feature, we can invoke a 

child kernel which relaxes adjacencies of the node in the main 

kernel; therefore, all adjacent nodes in the main kernel are 

processed simultaneously which results in fair work load.      

 

 
Algorithm 2: Pseudo kernel for Bellman-Ford. V represents the 

node weight array, E represents the edge costs, s is the source 

node, F1 and F2 are the queues. ENQUEUE function puts the 

given node into given queue. 

5.2 Reweigthing 

In this step, all edge costs are updated completely 

independent of each other’s.  Each thread is responsible from 

one node. Each thread updates the costs of out-going edges of 

corresponding node by using the node weights calculated by 

Bellman-Ford algorithm in previous step according to the 

formula given in previous section as shown in Algorithm 3. 

 

 
Algorithm 3: Reweighting kernel. 

5.3 Parallel Dijkstra Algorithm 

Unlike Bellman-Ford algorithm, it is not straight forward 

to parallelize Dijkstra’s algorithm because of its sequential 

nature. Although there can be different approaches, we 

parallelize the inner operations of the Dijsktra’s algorithm. At 

outer loop, the algorithm chooses a node to compute new 

distance values. Inner operations relax outgoing edge values to 

update node labels. If we can select frontier nodes that can be 

updated separately without affecting the correctness of the 

algorithm, the algorithm can be parallelized efficiently. The 

method to define the frontier set is explained in [21].  

At each iteration of Dijkstra’s algorithm, we need to 

identify the nodes which will be inserted into the frontier set, 

then we can relax those nodes in parallel. Crauser et al [13] 

defined an algorithm that augments the frontier set with nodes 

with bigger tentative distance. At each iteration i, algorithm 



 

for each node of the unsettled set, u ∈ 𝑈𝑖, the sum of; its 

tentative distance and the minimum of the cost of its outgoing 

edges. Then, it chooses the minimum of those values. Finally, 

those nodes, whose tentative distance are lower or equal than 

the minimum value, are inserted into the frontier set. The 

process repeated until the threshold reaches infinity as shown 

in Algorithm 5. 

 

 
Algorithm 4: Pseudo kernel for relax operation. DEQUEUE 

function extracts from given queue corresponding to given 

index. ADJ function returns the neighbors of the given node. 

All other variables are the same with Algorithm 2. 

 
Arranz et al. [21], describe a modified version of method 

of Crauser et al. They introduce a new concept of 𝛥𝑖 as the 

limit value computed in each iteration i that holds any 

unsettled node u with its node weight less than 𝛥𝑖 can be 

settled safely. Their method proceeds as follows: First, for 

each node in graph, the algorithm calculates minimum edge 

cost among its outgoing edges. Second, for each iteration i of 

the external loop, having all tentative distances of the nodes on 

the unsettled set, it calculates a threshold value that is the 

minimum value of sum of node weight and corresponding 

value calculated in the first step among the unsettled nodes. 

Finally, it possible to put into the frontier set every node 

whose node weight is greater than the threshold value 

calculated in previous step.  

Minimum function called in main kernel is the modified 

version of the advanced reduce3 method of CUDA SDK [28] 

in order to calculate the threshold value. The update function 

is shown in the Algorithm 7. 

The problem with this implementation is that the flags of 

the nodes in the frontier set are not in consecutive locations in 

the flag array and this causes branch divergence. In order to 

avoid branch divergence, we have embedded the idea of 

frontier propagation using queue data structure, as in the 

parallel Bellman-Ford algorithm, into the parallel Dijkstra’s 

algorithm. To implement queue in GPU, we use two different 

approaches, namely Q-based and prefix-based approaches.  

In the main part of Q-based approach, instead of setting 

the frontier flag of the source node, it is put into the queue. 

The relax and update kernel of Q-based parallel Dijkstra’s 

algorithm is shown in Algorithm 8 and Algorithm 9 

respectively. The cost of this modification to the flag-based 

algorithm is the atomic operations when queue is being filled. 

Although it gets rid of the branch divergence significantly, all 

threads needs to update the queue sequentially in order to 

avoid race conditions. The time performance comparison of 

two approaches is presented in the Section 6. 

 

 
Algorithm 5: Pseudo kernel for main algorithm of flag-based 

Dijkstra. V represents the node weight array, E represents the 

edge costs, s is the source node, U is the unsettled flag array, F 

is the frontier flag array, Δ is the threshold value. 

 

 
Algorithm 6: Pseudo kernel for relax operation in flag-based 

Dijkstra. ADJ function returns the neighbors of the given 

node. The other variables are the same with Algorithm 5. 

 

 
Algorithm 7: Pseudo kernel for update function of flag-based 

Dijkstra. The variables are the same with Algorithms 5 and 6. 

 
In prefix-based approach, the elements are added into the 

queue by indexes which is previously calculated using prefix 

sum at the start of each iteration. Thus, there is no need for 

atomic operations (when filling queue) since the indexes are 

pre-defined. However, computation cost of the prefix sum is 

introduced in this method. The update kernel of prefix-based 



 

algorithm is shown in Algorithm 10 and the relax kernel is the 

same with that of Q-based approach. 

 
 

 
Algorithm 8: Pseudo kernel for relax operation of Q-based 

parallel Dijkstra. Q is the queue data structure. All other 

parameters are the same with Algorithm 5. 

 

 
Algorithm 9: Pseudo kernel for update function of Q-based 

Dijkstra. 

 

 

 
Algorithm 10: Pseudo kernel for update function of prefix-

based Dijkstra. 

 

To extend the single source parallel Dijkstra’s algorithm 

to the all-pairs shortest path algorithm, we have simply 

applied the algorithm for each node in the graph. 

6. Experimental Setup and Results 
The experiments have been conducted on 64-bit Windows 

10 Pro operating system with Intel Core i7-6700K CPU 

@4.00 GHz and 16GB DDR4 RAM. The GPU used is 

NVIDIA GeForce GTX 960. The dataset used in the 

experiments is composed of eight graphs with different 

number of nodes and edges (Table 1).  

In this work, we compare four different implementation of 

Johnson’s all-pairs shortest path algorithm in terms of 

execution time with given dataset, namely sequential, flag-

based parallel implementation, Q-based parallel 

implementation and prefix-based parallel implementation. The 

execution times are shown in Figure 3. 

Additionally, speed-up rates of different methods are 

shown in Figure 4.  It is observed that Q-based approach 

provides higher speed-up than flag-based approach for all 

graphs. This is clearly caused by the fact that branch 

divergence has more severe drawbacks than atomic operations 

have.  On the other hand, prefix-based approach, which is 

expected to be faster, has less speed-up than the other 

approaches. This is caused by the low input size with respect 

to the graphs in [24]. We could not supply higher sized inputs 

because of memory constraint in GPU since the problem is all-

to-all shortest path. Q-based approach can speed up the 

Johnson’s algorithm more than 4.5 times. 

In Figure 3, it can be clearly seen that, larger graphs are 

needed to benefit from the parallel GPU implementation.  

While there is no significant advantage is observed until 

number of edges is around 150000, GPU implementation has 

lower execution time with larger graphs.  

Table 1: Properties of the graphs used in the experiments 

Graph # of nodes # of edges 

Graph1 [29] 6301 20777 

Graph2 [29] 36682 88328 

Graph3 [29] 62586 147892 

Graph4 [30] 58228 428156 

Graph5 [31] 75879 508837 

Graph6 [32] 77360 905468 

Graph7 [33] 265214 420045 

Graph8 [32] 82168 948464 

 

 

 Figure 3: Execution times on different graphs. 

 

 
Figure 4: Speed-up rates on different graphs. 

7. Conclusions and Discussion 

  In this paper, we proposed an efficient GPU 

implementation of Johnson’s all-pairs shortest path algorithm. 

The dominant part of Johnson’s algorithm is Dijkstra’s part 

and in this part we combined queue-based approach from 

Busato et al. [24] and Δ- stepping approach from Crauser et al. 

[13] in order to make Dijkstra’s algorithm parallel by avoiding 

branch divergence. The results show that although the 

proposed method suffers from atomic operations, it is more 

efficient than the flag-based methods due to lack of branch 



 

divergence. However, as the input size increases, the 

performances difference between the two gets smaller. 

The proposed method can be preferable when the input 

graph is negative-weighted because Dijsktra’s algorithm 

cannot run with negative-weighted graphs. In addition, it can 

be more efficient than Floyd-Warshall algorithm if the input 

graph is sparse. 

As a future work, the performance comparison between 

proposed method and GPU implementation of Floyd-Warshall 

algorithm can be done.  
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