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Abstract

We present an improvement of the multi-level bucket shortest path algorithm of Denardo
and Fox [9] and justify this improvement, both theoretically and experimental ly. We prove that
if the input arc lengths come from a natural probability distribution, the new algorithm runs in
linear average time while the original algorithm does not. We also describe an implementation
of the new algorithm. Our experimental data suggests that the new algorithm is preferable to
the original one in practice. Furthermore, for integral arc lengths that fit into a word of today’s
computers, the performance is close to that of breadth-first search, suggesting limitations on
further practical improvements.

Preliminary versions of theoretical and ezperimental results presented in this paper appeared in
[21, 22] and [28], respectively.
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1 Introduction

The shortest path problem with nonnegative arc lengths (the NSP problem) is very common in
practice, and algorithms for this problem have been extensively studied, both from theoretical,
e.g., [2, 6,9, 10,12, 13, 17, 25, 28, 29, 34, 37, 38, 39, 40, 42, 43, 44, 45], and computational, e.g.,
(4, 5, 11, 19, 20, 24, 26, 27, 31, 35, 36, 46], viewpoints. Efficient implementations of Dijkstra’s
algorithm [12], in particular, received a lot of attention.

Suppose that the input graph has n vertices and m arcs. To state some of the previous results,
we assume that the input arc lengths are integral. Let U denote the biggest arc length. We define
C to be the ratio between U and the smallest nonzero arc length, §. Note that if the lengths are
integral, then C' < U. Modulo precision problems and arithmetic operation complexity, our results
apply to real-valued arc lengths as well. To simplify comparing time bounds with and without U
(or C), one can make the similarity assumption [18]: logU = O(logn).

Several algorithms for the problem have near-linear worst-case running times, although no
algorithm has a linear running time if the graph is directed and the computational model is well-
established. In the pointer model of computation, the Fibonacci heap data structure of Fredman and
Tarjan [16] leads to an O(m+nlogn) implementation of Dijkstra’s algorithm. In a RAM model with
unit-time word operations, the fastest currently known algorithms achieve the following bounds:
O(m + n(log Uloglog U)'/%) [39], O(m + n(v/logn)) [38], O(mloglog U) [25], and O(mloglogn)
[43].

For undirected graphs, Thorup’s algorithm [42] has a linear running time in a word RAM model.
A constant-time priority queue of [3] yields a linear-time algorithm for directed graphs, but only
in a non-standard computation model that is not supported by any existing computer.

Our work has been motivated by a recent paper of Meyer [29]. The paper gives an NSP algorithm
with a linear average time for input arc lengths drawn independently from a uniform distribution
on [1,...,M]. It also proves that, under the same assumptions, the running time is linear with
high probability. Meyer’s algorithm may scan some vertices more than once, and its worst-case
time bound, O(nmlogn), is far from linear. Both the algorithm and its analysis are complicated.

In this paper we show that a natural improvement of the multi-level bucket (MLB) shortest path
algorithm of [9] has an average running time that is linear, and a worst-case time of O(m 4 n log C).
Our average-time bound holds for arc lengths distributed uniformly on [1,..., M];! the lengths do
not need to be independent. We also show that if the lengths are independent, the algorithm running
time is linear with high probability. We refer to the new algorithm as the smart queue algorithm.
Unlike the MLB algorithm, our algorithm is not an implementation of Dijkstra’s algorithm: a
vertex selected for scanning is not necessarily a minimum labeled vertex. However, the selected
vertex distance label is equal to the correct distance, and each vertex is scanned at most once.
Similar relaxation of Dijkstra’s algorithm was originally introduced by Dinitz [13] and used in its
full strength by Thorup [42].

Practical importance of the NSP problem motivated extensive computational work. Implemen-
tations of Dijkstra’s algorithm based on the classical binary heap data structure [45] were often used
as a benchmark to compare against. This algorithm is easy to code and has reasonable constant
factors.? In practice binary heaps usually outperform Fibonacci heaps [16] and often outperform
pairing heaps [40]. However, the running time of the algorithm based on binary heaps grows super-
linear with the number of elements on the heap, and the algorithm is not hard to beat on bigger
problems.

'The results also hold for other distributions such that the proof of Theorem 6.2 goes through.
*Implementations based on 4-heaps have better constants.



For many practical problems, label-correcting algorithms of Pape [36], Pallottino [35], and
Glover et al. [20] perform extremely well. However, these algorithms have bad worst-case time
bounds and sometimes perform poorly. Furthermore, unlike implementations of Dijkstra’s algo-
rithm and the smart queue algorithm, these algorithms cannot be terminated early if one desires a
shortest path between a pair of vertices.

Dail’s bucket-based algorithm [10] works well if U is small. Goldberg et al. [5] show that the two-
level bucket algorithm has a reasonable performance for moderately large U. Further theoretical and
experimental work [6, 24] produced more robust two- and three-level implementations. Although
they have much better worst-case performance than the label-correcting algorithms mentioned
above, these MLB implementations are somewhat slower on many practical problems. For example,
based on real-life road networks, Zhan and Noon [46] recommend Pallottino’s algorithm for the NSP
problem and bucket-based algorithms for the single pair problem.

We describe a practical implementation of the smart queue algorithm. As a step toward this
implementation, we develop a new implementation of the MLB algorithm that is more efficient than
the previous implementations if the number of bucket levels is large. A simple modification of this
implementation yields an efficient implementation of the smart queue algorithm. Our experimental
results show that the smart queue algorithm with a large number of levels is practical. In particular,
an implementation with the number of levels optimized for the worst-case theoretical performance
works well on both typical and bad-case inputs. For 32-bit arc lengths, the code runs in time
less than 2.5 times that of breadth-first search for all inputs we tried. These inputs included ones
designed to be hard for our implementation. Our results lead to better understanding of NSP
algorithm implementations and show how close their performance is to the lower bound provided
by breadth-first search.

Our algorithm has been motivated by a theoretical average-case analysis. The fact that the
algorithm is also practical is an interesting example of a situation where probabilistic analysis leads
to improved practical performance.

2 Preliminaries

The input to the NSP problem is a directed graph G = (V, A) with n vertices, m arcs, a source
vertex s, and nonnegative arc lengths ¢(a). The goal is to find shortest paths from the source to all
vertices of the graph. Unless mentioned otherwise, we assume that arc lengths are integers in the
interval [1,...,U], where U denotes the biggest arc length. Let & be the smallest nonzero arc length
and let C' be the ratio of the biggest arc length to d. If all arc lengths are zero or if C' < 2, then the
problem can be solved in linear time [13]; without loss of generality, we assume that C' > 2 (and
log C' > 1). This implies logU > 1. We say that a statement holds with high probability (w.h.p.) if
the probability that the statement is true approaches one as m — oo.

We assume the word RAM model of computation (see e.g., [1]). To efficiently implement the
MLB date structure [9], we need array addressing and the following unit-time word operations:
addition, subtraction, comparison, and arbitrary shifts. To allow a higher-level description of our
algorithm, we use a strong RAM computation model that also allows word operations including
bitwise logical operations and the operation of finding the index of the most significant bit in
which two words differ. The latter operation is in AC0; see [8] for a discussion of a closely related
operation. The use of this more powerful model does not improve the amortized operation bounds,
but simplifies the description.




3 Labeling Method and Related Results

f'he labeling method for the shortest path problem [14, 15] works as follows (see e.g., [41]). The
method maintains for every vertex v its distance label d(v), parent p(v), and status S(v) €
{unreached, labeled, scanned}. Initially d(v) = oo, p(v) = nil, and S(v) = unreached. The
method starts by setting d(s) = 0 and S(s) = labeled. While there are labeled vertices, the
method picks such a vertex v, scans all arcs out of v, and sets S(v) = scanned. To scan an arc
(v,w), one checks if d(w) > d(v) + £(v,w) and, if true, sets d(w) = d(v) + £(v,w), p(w) = v, and
S(w) = labeled.

If the length function is nonnegative, the labeling method always terminates with correct short-
est path distances and a shortest path tree. The efficiency of the method depends on the rule to
chose a vertex to scan next. We say that d(v) is ezact if the distance from s to v is equal to d(v).
It is easy to see that if the method always selects a vertex v such that, at the selection time, d(v)
is exact, then each vertex is scanned at most once.

Dijkstra [12] observed that if ¢ is nonnegative and v is a labeled vertex with the smallest
distance label, than d(v) is exact. However, a linear-time implementation of Dijkstra’s algorithm
in the strong RAM model as at least as hard as linear-time sorting. Dinitz [13] and Thorup [42] use
a relaxation of Dijkstra’s selection rule to get linear-time algorithms for special cases of the NSP
problem. To describe a related relaxation that we use, define the caliber of a vertex v, c(v), to be
the minimum length of an arc entering v, or infinity if no arc enters v.

Lemma 3.1 (CALIBER LEMMA) Suppose £ is nonnegative and let p be a lower bound on distance
labels of labeled vertices. Let v be a vertex such that p+ c(v) > d(v). Then d(v) is ezact.

The lemma follows from the observation that for any labeled vertex u, such that (u,v) € A
d(u) + £(u,v) > p+c(v) > d(v).
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4 Algorithm Description and Correctness

Our algorithm is based on the MLB implementation of Dijkstra’s algorithin modified to use
Lemma 3.1 to detect and scan vertices with exact (but not necessarily minimum) distance la-
bels. Our algorithm is a labeling algorithm. During the initialization, the algorithm also computes
c(v) for every vertex v. The algorithm keeps labeled vertices in one of two places: a set F and a
priority queue B. The former is implemented to allow constant time additions and deletions, for
example as a doubly linked list. The latter is implemented using multi-level buckets as described
below. The priority queue supports operations insert, delete, decrease-key, and extract-min.
However, the insert operation inserts vertices into either B or F, and the decrease-key operation
may move vertices from B to F

At a high level, the algorithm works as follows. Vertices in F have exact distance labels and if
F' is nonempty, we remove and scan a vertex from F. If F is empty, we remove and scan a vertex
from B with the minimum distance label. Suppose a distance label of a vertex u decreases. Note
that u cannot belong to F. If u belongs to B, then we apply the decrease-key operation to .
This operation either relocates v within B or discovers that u’s distance label is exact and moves
u to F. If u is neither in B nor F, we apply the insert operation to u, and u is inserted either
into B or, if d(u) is determined to be exact, into F.

Next we describe the bucket structure B. For a given integer parameter A > 2. B contains
k + 1 levels of buckets, where k = [logs U]. Except for the top level, a level contains A buckets.
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Figure 1: MLB example. A =2, k = 3, u = 10. Values on the bottom are in decimal. Values on
top are in binary, with the least significant bit on the bottom. Shaded bits determine positions of
the corresponding elements.

Conceptually, the top level contains infinitely many buckets. However, at most three consecutive
top-level buckets can be nonempty at any given time (see Lemma 4.1 below), and one can maintain
only these buckets by wrapping around modulo three at the top level.3 We denote bucket 7 at level
i by B(4,j); i ranges from 0 (bottom level) to &k (top), and j ranges from 0 to A — 1, except at
the top level discussed above. A bucket contains a set of vertices maintained in a way that allows
constant-time insertion and deletion, e.g., in a doubly linked list. At each level t, we maintain the
number of vertices at this level.

We maintain p such that 4 is a lower bound on the distance labels of labeled vertices. Initially
p = 0. Every time an extract-min operation removes a vertex v from B , weset 4 = d(v). Consider
the base A representation of the distance labels and number digit positions starting from 0 for the
least significant digit. Let y;; denote the i-th through j-th least significant digit of p and let yu;
denote the i-th least significant digit. Similarly, d;(u) denotes the i-th least significant digit of
d(u), and likewise for the other definitions. Note that u and the k + 1 least significant digits of the
base A representation of d(u) uniquely determine d(u): d(u) = p+ (uok — pog) if Uk > o and
d(u) = p+ A¥ + (uok — po k) otherwise.

For a given u, let p; and @; be pu with the 7 least significant digits replaced by 0 or A — 1,
respectively. Each level i < k corresponds to the range of values [u;+1,751]. Each bucket B (1,7)
corresponds to the subrange containing all integers in the range with the i-th digit equal to 5. At
the top level, a bucket B(k, j) corresponds to the range [j- A¥, (j + 1) - A¥). The width of a bucket
at level i is equal to A% the bucket contains A’ distinct values. We say that a vertex u is in the
range of B(1,j) if d(u) belongs to the range corresponding to the bucket.

The position of a vertex u in B depends on u: u belongs to the lowest-level bucket containing
d(u). More formally, let  be the index of the most significant digit in which d(u) and pg differ,
or 0 if they match. Note that p; < d(u) < ;. Given x and u with d(u) > p, we define the position
of u by (i,d;(u)) if i < k and B(k, |d(u) — u/AF|) otherwise. If u is inserted into B, it is inserted
into B(%, ), where (4, j) is the position of u. For each vertex in B, we store its position.

Figure 1 gives an example of the bucket structure. In this example, A = 2, k = 3, and
# = 10. For instance, to find the position of a vertex v with d(v) = 14, we note that the binary
representations of 10 and 14 differ in bit 2 (remember that we start counting from 0) and the bit
value is 1. Thus v belongs to bucket 1 at level 2.

Our modification of the MLB algorithm uses Lemma 3.1 during the insert operation to put

*For low-level efficiency, one may want A to be a power of two and wrap around modulo four.




vertices into F' whenever the lemma allows it. The details are as follows.

insert: Insert a vertex u into B U F as follows. If u + c(u) > d(u), put u into F. Otherwise
compute u’s position (7,5) in B and add u to B(4, j).

decrease-key: Decrease the key of an element u in position (4,5) as follows. Remove v from
B(i, 7). Set d(u) to the new value and insert u as described above.

extract-min: Find the lowest nonempty level 7. Find j, the first nonempty bucket at level i, by
setting j to the index of the bucket at level ¢ that contains u, and incremental j until the bucket
B(i,j) is nonempty. If i = 0, delete a vertex u from B(4,4). (In this case u = d(u).) Return u. If
i > 0, examine all elements of B(i,j) and delete a minimum element u from B(i, j). Note that in
this case p < d(u); set p = d(u). Since p increased, some vertex positions in B may have changed.
We do bucket expansion of B(s,j) and return u.

To understand bucket expansion, note that the vertices with changed positions are exactly those
in B(i, j). To see this, let 4’ be the old value of y and consider a vertex v in B. Let (7, j') be v’s
position with respect to u’. By the choice of B(3, ), if (4,5) # (i, 5'), then either ¢ < ', or i = ¢’
and j < j'. In both cases, the common prefix of 4’ and d(v) is the same as the common prefix of
d(u) and d(v), and the position of v does not change.

On the other hand, vertices in B(%,j) have a longer common prefix with d(u) than they have
with 1’ and these vertices need to move to a lower level. Bucket expansion deletes these vertices
from B(%) and uses the insert operation to add the vertices back into B or into F| as appropriate.
The vertex u in B(4,7) with the minimum distance label is not inserted into B, but returned and
scanned. Note that we do bucket expansions only when F is empty and the expanded bucket
contains a labeled vertex with the minimum distance. Thus p is updated correctly.

Although the formal description of the algorithm is nontrivial, the algorithm itself is simple: At
each step, remove a vertex from F or, if F is empty, then remove the minimum-labeled vertex from
B. In the latter case, expand the bucket from which the vertex has been removed, if necessary.
Scan the vertex and update its neighbors if necessary. Terminate when both F and B are empty.

The width of a top level bucket is at least U. In the original MLB algorithm, at any point of
the execution all labeled vertices are contained in at most two consecutive top level buckets. A
slightly weaker result holds for our algorithm.

Lemma 4.1 At any point of the ezecution, all labeled vertices are in the range of at most three
consecutive top level buckets.

Proof. Let p' be the current value of 4 and let B(k, ) be the top level bucket containing '. Except
for s (for which the result holds trivially), a vertex v becomes labeled during a scan of another
vertex u removed from either B or F. In the former case, at the time of the scan d(u) = p < w
d(v) = p + £(u,v) < p' + U, and therefore v is contained either in B(k,j) or B(k,j + 1). In the
latter case, when u has been added to F, the difference between d(u) and p was at most c(u) < U,
thus d(u) < p'+ U, d(v) < d(u) + U < p/ +2- U, and thus v belongs to B(k,j), B(k,j + 1), or
B(k,j+2). ]

Algorithm correctness follows from Lemmas 3.1 and 4.1, and the observations that 4 is always
set to the minimum distance label of a labeled vertex, p remains a lower bound on the labeled
vertex labels (and therefore is monotonically nondecreasing), and F' always contains vertices with
exact distance labels.



5  Worst-Case Analysis

In this section we prove a worst-case bound on the running time of the algorithm. Our analysis is

similar to that for the MLB algorithm given in [6], except the resulting bound has a C instead of

a U. Some definitions and lemmas introduced in this section will be also used in the next section.
We start the analysis with the following lemmas.

Lemma 5.1 [6]
* Given p and u, we can compute the position of u with respect to pu in constant time.

e We can find the lowest nonempty level of B in constant time.

Lemma 5.2 The algorithm runs in O(m +n + @1 + ®3) time, where B, is the total number of
times a vertex moves from a bucket of B to a lower level bucket and ®, is the number of empty
buckets ezamined by the algorithm.

Proof. Since each vertex is scanned at most once, the total scan time is O(m +n). A vertex is
added to and deleted from F' at most once, so the total time devoted to maintaining F is O(n). An
insert operation takes constant time, and these operations are caused by inserting vertices into B
for the first time, by decrease-key operations, and by extract-min operations. The former take
O(n) time; we account for the remaining ones jointly with the other operations. A decrease-key
operation takes constant time and is caused by a decrease of d(v) due to a scan of an arc (u,v). Since
an arc is scanned at most once, these operations take O(m) total time. The work we accounted for
so far is linear.

Next we consider the extract-min operations. Consider an extract-min operation that returns
u. The operation takes O(1) time, plus the time proportional to the number of empty buckets
examined, plus the time proportional to the number of vertices in the expanded bucket, excluding
u. Each of these vertices moves to a lower level in B. Thus we get the desired time bound. [ |

Note that ®; = O(nk) and ®; = O(nA) since after examining less than A empty buckets

we discover a nonempty one and scan a vertex from it. Setting A to I_Iolof—%] balances ®; and

g
®, and yields the O (m + n%golgo—gﬁ) worst-case time bound. To get a better bound, we define

k, = LlOgA (5J .
Lemma 5.3 Buckets at level k' and below are never used.

Proof. Let (4,7) be the position of a vertex v of caliber c(v) > 0. If i <K', then d(v) — p < A <
A* < § < ¢(v) and the algorithm adds v to F, not B. ]

The lemma implies that the algorithm uses O(log U — log a0) = O(loga C) bucket levels.

Setting A to [ %Og—c] and applying Lemma 5.3, we get the following result.

Theorem 5.4 The worst-case running time of the algorithm is O(m + n%).

Note that setting A = 2 yields an O(m + nlog C) bound.

Our optimization can also be used to improve other data structures based on multi-level buckets,
such as radix heaps [2] and hot queues [6]. For these data structures, the equivalent of Lemma 5.3
allows one to replace time bound parameter U by C. In particular, the bound of the hot queue im-
plementation of Raman [39] improves to O(m +n(log Cloglog C)'/3). The modification of Raman’s
algorithm to obtain this bound is straightforward given the results of this section.




6 Average-Case Analysis

In this section we prove that for A = 2 (or any other constant), the smart queue algorithm runs in
linear average time under the assumption that the input arc lengths are uniformly distributed on
[1,..., M].* We also show that the running time is linear with high probability with the additional
assumption that the lengths are independent.

Since A = 2, 3 = O(n); it remains to bound ®;.

A key lemma for our analysis is as follows.

Lemma 6.1 The algorithm never inserts a vertex v into a bucket at a level less than or equal to
log ¢(v) — 1.

Proof. Suppose during an insert operation v’s position in B is (7, 4) with i < log ¢(v) — 1. Then
the most significant digit in which d(v) and y differ is digit 4 and d(v) — u < A™*! < ¢(v). Therefore
insert puts v into F', not B. [ |

The above lemma motivates the following definitions. The weight of an arc a, w(a), is defined
by w(a) = k — [log£(a)]. The weight of a vertez v, w(v), is defined to be the maximum weight of
an incoming arc or zero if v has no incoming arcs. Lemma 6.1 implies that the number of times v
can move to a lower level of B is at most w(v) + 1 and therefore ®; < m + 3", w(v). Note that k
depends on the input, and thus the weights are defined with respect to a given input.

For the probability distribution of arc weights defined above, we have
Pr[[log#(a)] =i] =2/M for i = 0,...,k — 1. The definition of w yields

Priw(a) =] =2""t/M fort=1,... k. (1)
Since M > U, we have M > 2¥=1 and therefore
Priw(a) =#] <27 fort=1,... k. (2)

Theorem 6.2 If arc lengths are uniformly distributed on [1,. .. , M|, then the average running time
of the algorithm is linear.

Proof. Since ® <m + } y w(v), it is enough to show that E[} "y, w(v)] = O(m). By the linearity
of expectation and the definition of w(v), we have B[}, w(v)] < 3", E[w(a)]. The expected value
of w(a) is

k o] 00
E[w(a)] =) iPrlw(a) =i] < Y 27+ =23 2~ = 0(1).
i=1 i=1 i=1
Note that this bound holds for any k. Thus } , E[w(a)] = O(m). ]

Remark Note that Theorem 6.2 does not require arc lengths to be independent. Our proof of
its high-probability variant, Theorem 6.7, requires the independence.

Remark The proof of the theorem works for any arc length distribution such that E[w(a)] =
O(1). In particular, the theorem holds for real-valued arc lengths selected uniformly from [0, 1].
In fact, for this distribution the high-probability analysis below is simpler (given the independence
assumption). However, the integer distribution is somewhat more interesting, because some test
problem generators use this distribution and most practical problems have integral lengths.

*As we shall see, if M is large enough then the result also applies to the range [0,..., M 1.



+ Next we show that the algorithm running time is linear w.h.p. by showing that ) , w(a) =
O(m) w.h.p. First, we show that w.h.p. U is not much smaller than M and ¢ is close to Mm~!
(Lemmas 6.3 and 6.4). Let S; be the set of all arcs of weight ¢ and note that Yawla) =Y, 1S
We show that as ¢ increases, the expected value of |S;| goes down exponentially. For small values
of ¢, this is also true w.h.p. To deal with large values of ¢, we show that the total number of arcs
with large weights is small, and so is the contribution of these arcs to the sum of arc weights.

Proofs of the following two lemmas are fairly standard; we include them to make the paper
self-contained.

Lemma 6.3 W.h.p., U > M/2.

Proof. For an arc a, Pr[¢(a) < M/2] < 1/2 and by the independence of arc lengths,
PrlU<M/2]<2™™ 50 asm — oo.
Thus Pr{U > M/2] - 1 as m — oo. |
Lemma 6.4 W.h.p., § > Mm~4/3, If M > m?23, then w.h.p. § < Mm~2/3,
Proof. For an arc a, we have
Pr[ﬂ(a) > Mm_4/3] =(M - Mm™3 /M >1-m*/3

Since the arc lengths are independent, we have

Pr[d > Mm_4/3] > (1 — m_4/3)m —1 asm — oo.

Similarly,

m—2/3

Pr [e(a) > Mm-2/3] = (M — [Mm~23))/M < 1 —

and by the independence
2/3 1 m
Pr[6>Mm ]2(1—m> -0 asm — oo.

From (1) and the independence of arc weights, we have E[|S;[] == m2¥=t/M. By the Chernoff
k—t
bound (see e.g. [7, 33]), Pr[|S;| > 2m25=t /M) < (%)m2 ™ Since M > 281 we have

2m2~t
Pr[|S,] > 4m2] < (Z) "

As mentioned above, we bound the contributions of arcs with large and small weights to )~ , w(a)
differently. We define 8 = log(m?/ 3) and partition A into two sets, A; containing the arcs with
w(a) < B and A containing the arcs with w(a) > 8.

Lemma 6.5 }_, w(a) = O(m) w.h.p.




Proof. Assume that § > Mm~4/3 and U > M /2; by Lemmas 6.3 and 6.4 this happens w.h.p. This
assumption implies C < m*/3. The probability that for some t: 1 < ¢ < , |St| > 4m27t is, by the
union bound and the fact that the probability is maximized for ¢ = 3, less than
e m2=F 9 e\ mm~
et < /3 _)
(5" <o
Thus w.h.p., for all £: 1 <t < 3, we have |S;| < 4m2~* and

2/3 e\ ml/3
_<_logm(z) =0 asm — .

<8

D owla) =) #S] <4m Y27t = O(m).
Ax

t=1 t=1

Lemma 6.6 ), w(a) = O(m) w.h.p.

Proof. If M < m?/3, then k < 8 and A is empty, so the lemma holds trivially.

Now consider the case M > m?/3. By Lemmas 6.3 and 6.4, w.h.p. Mm~4/3 < § < Mm~2/3
and U > M/2; assume that this is the case. The assumption implies mn?/3 /2 < C < mi/3.
Under this assumption, we also have 2¥—1 < M < 9k+1, Combining this with (1) we get 2727t <
Pr{w(a) = t] < 2!, This implies that

2728 < Prlw(a) > B8] < 2277,

therefore
m—2/3
3 < Pr[w(a) > B] < 4m~1/3
and by the independence of arc weights,
1/3
m8 < E[|4s]] < 4m?/3

By the Chernoff bound,
e\ HlAz|]
Prl4s] > 2B(4sl]) < ().

Replacing the first occurrence of E[|As|] by the upper bound on its value and the second occurrence
by the lower bound (since e/4 < 1), we get

Pr[|A2| > 8m2/3] < <§)m1/3/8 -0 asm — oo.

For all arcs a, £(a) > §, and thus
w(a) =k~ [£(a)] <1+1logU+1—-1logéd=2+1logC < 2+ (4/3)log m.

Therefore w.h.p.,

> w(a) < 8m*3(2 + (4/3) logm) = o(m).
Az

Thus we have the following theorem.

Theorem 6.7 If arc lengths are independent and uniformly distributed on (1,...,M], then with
high probability, the algorithm runs in linear time.

Remark The expected and high probability bounds also apply if the arc lengths come from
[0,...,U] and U = w(m), as in this case with high probability no arc has zero length.
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7 Algorithm Implementation

In this section we describe efficient implementations of MLB and smart queue algorithms, including
algorithm engineering considerations involved in their development. We also discuss how the MLB
implementation differs from the previous implementations [6, 24]. The MB code implements the
algorithm MLB algorithm and the sQ code implements the smart queue algorithm.

Previous implementations of the MLB algorithm, as well as those described below, use the
following wide bucket heuristic. Pick w such that 0 < w < 6. Then the MLB algorithm remains
correct if one multiplies the bucket width on every level by w. Both MB and SQ codes use the wide
bucket heuristic. We refer to the modifications needed to convert the MLB algorithm to the smart
queue algorithm as the caliber heuristic. This heuristic is the only difference between MB and SQ.

Our implementation of MB is very similar to that of [24], except in the details of the insert
operation. The previous implementation maintained a range of distance values for each level,
updating the ranges when the value of u changed. To insert a vertex, one looks for the lowest
level to which the vertex belongs, and then computes the offset of the bucket to which the vertex
belongs. In contrast, MB and SQ compute the vertex position with respect to pu as described in
Section 4. This is slightly more efficient when the number of levels is large. The efficiency gain
is bigger for sQ because it does not necessarily examine all levels for a given value of u. The new
implementation is also simpler than the old one.

We always set A to a power of two. This allows us to use bit shifts instead of divisions. Our
codes set w to the biggest power of two not exceeding 8, or to one if § < 1. We use an array to
represent each level of buckets.

One can give MB either k or A as a parameter. Then MB sets the other parameter based on
the input arc lengths. We refer to the code with the number of levels k set to two by MB2L, and
to the code with A set to two by MB2D. These are the two extreme cases that we study. (We do
not study the single-level case because it often would have needed too much memory and time.)
Alternatively, one can let MB chose the values of both k and A based on the input. We refer to this
adaptive variant as MB-A. The adaptive variant of the algorithm uses the relationship A = O(k)
suggested by the worst-case analysis. To chose the constant hidden by the © location, we observe
the following. Examining empty buckets involves looking at a single pointer and has good locality
properties as we access the buckets sequentially. Moving vertices to lower levels, on the other
hand, requires changing several pointers, and has poor locality. This suggests that A should be
substantially greater than k, and experiments confirm this.

In more detail, MB-A sets k and A as follows. First we find the smallest value of k such that
k is a power of two and (16k)¥ > U/w. Then we set A to 16k. At this point, however, both A
and k may be larger than they need to be. While (A/2)% > U /w we reduce A. Finally while
(A)*=! > U/w we reduce k. This typically leads to 16k < A < 128k and works well in our tests.

We obtain our $Q code by adding the caliber heuristic to MB. The modification of MB is
relatively straightforward. We use a stack to implement the set F needed by the caliber heuristic.
The adaptive variant of the code, sQ-A, uses the same procedure to set k£ and A as MB-A does.

8 Experimental Methodology and Setup

Following Moret and Shapiro [32], we use a baseline code — breadth-first search (BFS) in our case
— and measure running times of our shortest path codes on an input relative to the BFS running
time on this input. Our BSF code computes distances and a shortest path tree for the unit length
function. The breadth-first search problem is a special case of NSP and, modulo low-level details,
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the BFS running time is a lower bound on the NSP codes. Baseline running times give a good
indication of how close to optimal the running times are and reduces dependency on low-level
implementation and architecture details.

However, some of the dependencies, in particular cache dependencies, remain. Our codes put
arc and vertex records in consecutive locations. Input IDs of the vertices determine their ordering
in memory. In general, breadth-first search examines vertices in a different order than an NSP
algorithm. This may — and in some cases does — lead to very different caching behavior of the
two codes for certain vertex orderings. To deal with this dependency on input IDs, our generators
permute the IDs at random. Thus all our problem generators are randomized.

For every input problem type and any set of parameter values, we run the corresponding gen-
erator five times and report the averages. We report the baseline BFS time in seconds and all other
times in units of the BFs time. In addition, we count operations that determine ®; and ®5 in
Lemma 5.2. For each of these operations, we give the number of the operations divided by the
number of vertices, so that the amortized operation cost is immediate. The two kinds of operations
we count are examinations of empty buckets and the number of vertices processed during bucket
expansion operations.

We use 64-bit integers for internal representation of arc lengths and distances. If the graph
contains simple paths longer than 2%¢, our codes may get overflows. Note that for 32-bit input arc
lengths, no overflow can happen unless the number of vertices exceeds 232, which is too many to
fit into the memory of a modern computer.

Our experiments have been conducted on a 933 MHz Pentium IIT machine with 512M of memory,
256K cache, and running RedHat Linux 7.1. All our shortest path codes and the baseline code are
written in C++, in the same style, and compiled with the gcc compiler using the -06 optimization
option. Our BFS code uses the same data structures as the MB code.

9 Problem Families

We report data on seven problem families produced by three problem generators. These problem
families have been selected as the most interesting from many more families we experimented with.
Since we are interested in efficiency of the data structures, we restrict our stud v to sparse graphs,
for which the data structure manipulation time is most apparent.

Our first generator, SPRAND, builds a Hamiltonian cycle and then adds arcs at random. The
generator may produce parallel arcs but not self-loops. Arc lengths are chosen independently and
uniformly from [£,u]. Vertex 1 is the source. If the number of arcs is large enough, SPRAND
graphs are expanders and the average number of vertices in the priority queue during a shortest
path computation is large.

We use SPRAND to generate two problem families, RAND-I and RAND-C. For both families,
¢ =1and m = 4n. For RAND-I, v = n, and n increases by a factor of two from one set of
parameter values to the next one. We chose the initial value of n large enough so that the running
time is nonnegligable and the final value as large as possible subject to the constraint that all our
codes run without paging. For RAND-C, n = 2% and u = 2%; i starts at 1 and then takes on
integer multiples of four from 4 to 32. Up to ¢ = 20, the minimal arc length ¢ in all test inputs is
one. For ¢ =24, § is greater than one for some inputs. For ¢ = 28 and 32, § is always greater than
one. Note that the expected value of C does not change for i > 28, and therefore the results for
¢ > 32 would have been very similar to those for i = 28 and 32.

Our second generator, SPGRID, produces grid-like graphs. An z,y grid graph contains z - y
vertices, [¢,j], for 0 < i <z and 0 < j < y. A vertex [, 5] is connected to the adjacent vertices
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Figure 2: An example of a hard prob-
lem instance; K = 3 and A = 16. Arc
lengths are given in hexadecimal. We
omit the extra vertex with arcs de-
signed to manipulate vertex calibers.

in the same layer, [i,5 + 1 mod y] and [{,j — 1 mod y]. In addition, for i < z — 1, each vertex
[¢4, 7] is connected to the vertex [i+ 1, Jjl. Arc lengths are chosen independently and uniformly from
[¢,u]. Vertex [0,0] is the source. We use SPGRID to generate two problem families, LONG-I and
LONG-C. Both families contain long grid graphs with y = 8 and z a parameter. For these graphs,
the average number of vertices in the priority queue is small.

The LONG-T and LONG-C problem families are similar to the RAND-I and RAND-C families.
For LONG-I, v = n and n increases by a factor of two from the value that yields a reasonable
running time to the maximum value that does not cause paging. The LONG-C problem family
uses the same values of u as the RAND-C problem family.

Our last problem generator is SPHARD. This generator produces problems aimed to be hard
for MLB algorithms for certain values of k£ and A. Graphs produced by this generator consist
of 2k + 1 vertex-disjoint paths, with the source connecting to the beginning of each path. (See
Figure 2 for an example.) These paths have the same number of arcs, which can be adjusted to
get a graph of the desired size. Path arcs have a length of A. The lengths of the source arcs are
as follows. One arc has zero length. Out of the remaining arcs, k arcs have the following base-A
representation. For 1 < i < k, the first 7 digits are A — 1 and the remaining digits are 0. The last
k arcs, for 1 < j < k, have the first j — 1 digits A — 1, the J-th digit 1, and the remaining digits 0.
The graph also contains an extra vertex with no incoming arcs connected to every other vertex of
the graph. The length of the arc connecting the vertex to the source is zero to make sure that the
minimum arc length is zero. Lengths of the other arcs are all the same. These lengths can be zero
(to force every vertex caliber to zero) or large (so that the calibers are determined by the other
arcs).

Note that if the SPHARD generator with parameters k and A produces an input, our adaptive
codes may select different parameter values. For D = log A, a problem produced by SPRAND has
(k - D)-bit lengths. These lengths determine parameter values selected by the adaptive codes.

The three SPHARD problem families we study are HARDI, HARDO, and HARDEST-SQ. The
first two problem families differ only in the length of the arcs which determine vertex calibers:
the length is large for the first family and zero for the second. All problems in this family have
approximately 220 vertices, and the number of arcs is approximately the same in all problems. To
create a problem in this family, we chose k and D such that k-D = 36 and generate a problem which
is hard for MB with k levels and A = 2. Each HARDEST-SQ problem also has approximately 220
vertices. Problems in this family differ by the & and A values. These values are selected so that
both the generator and the adaptive codes use the same k and A parameters.
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10 Experimental Results \

This section discusses our experimental results. The appendix contains supporting data tables.

Caliber heuristic effectiveness. Our analysis shows that work of the caliber heuristic is amor-
tized over other work performed by the algorithm and therefore the heuristic cannot hurt perfor-
mance by much. The heuristic can, however, significantly improve performance. Experimental
data confirms this fact. In particular, data for the HARD1 family in Table 4 shows how drastic
performance improvement can be. The HARDO family data in Table 4 shows that if all vertex
calibers are forced to zero and the caliber heuristic never helps, its cost is just a few percents of
the running time.

Making more levels practical. Our previous work [5, 6] showed that 2- and 3-level MLB im-
plementations and their variants perform well except on certain types of graphs with very large
lengths. Increasing the number of levels improved performance on bad examples but hurt perfor-
mance on “typical” problems somewhat. Comparing MB and SQ code performance on graphs with
random arc weights (Tables 1-3), we observe that, as the theory would suggest, the caliber heuristic
helps more if the number of bucket levels is higher. This is especially apparent if one compares
data for MB2D and $Q2D on RAND-C problems (Table 2). This makes the bucket structures with
higher number of levels, in particular the adaptively selected number of levels, practical. While the
random arc length data illustrates how the caliber heuristic helps in “typical” cases, Table 4 shows
the effectiveness of adaptive parameter selection on hard problems: Note that for problems with
36-bit lengths, our adaptive codes set k = 6.

Operation counts and code tuning. As the analysis suggests, poor performance of the MLB
codes is caused by either a large number of the empty bucket examinations or a high cost of bucket
expansion operations. See for example Tables 3 and 4. The data shows that if the number of
empty bucket examinations per vertex is moderate (e.g., ten), they are well-amortized by other
operations on vertices and do not have a noticeable effect on the running time. When the number
of these operations reaches a hundred per vertex, they do have an effect. See e.g., Tables 2 and 3.
Table 4 shows that processing vertices during bucket expansion is more expensive. Processing one
vertex influences the running time roughly as much as scanning a hundred empty buckets. These
observations justify the choice of k¥ and A in our adaptive algorithms.

Most robust code. Our data also suggests that SQ-A is a very robust code. Often it is the
fastest code, and its running time is always within 10% the fastest code. When designing the
HARDEST-SQ problem family, our goal was to produce problems which are hard for the sqQ-A
code. If one believes that these problems are close to the worst-case, then Table 5 shows that even
for large lengths, sQ-A performs very well. For example, for 49-bit lengths, its running time exceeds
that of BFs by less than a factor of three. We estimate that for 32-bit lengths, sq-A running time
is always within a factor of 2.5 of the BFS time.

11 Concluding Remarks

The worst-case bound for the smart queue algorithm is achieved for A = H(Flgolgc%é), when the

work of moving vertices to lower levels balances the work of scanning empty buckets during bucket
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expansion. Our average-case analysis reduces the former but not the latter. We get a linear running
time when A is constant and the empty bucket scans can be charged to vertices in nonempty buckets.
An interesting open question is if one can get a linear average running time and a better worst-case
running time, for example using techniques from [2, 6, 9], without running several algorithms “in
parallel.”

Our optimization is to detect vertices with exact distance labels before these vertices reach the
bottom level of buckets and place them into F. This technique can be used not only in the context
of multi-level buckets, but in the context of radix heaps [2] and hot queues [6].

The fact that sQ-A performance is close to that of BFS limits potential improvements one would
consider. For example, a search of a graph to determine better parameter values would not pay for
itself, unless it can be amortized over many shortest path computations, e.g. in the context of the
all-pairs shortest path problem.

We would like to note that Mayer’s algorithm [29] and its simplified version (30] (published
after [21]), is unlikely to be competitive with our algorithm in practice because it is more compli-
cated. For example, in Mayer’s algorithm the number of buckets at each level is set dynamically,
and the efficient way of computing the position of a vertex in the bucket data structure that we
use does not apply to Mayer’s algorithm.

Informal experiments show that for problems that are easy for the label-correcting algorithms,
the smart queue algorithm works almost as well. It would be interesting to have a more formal
comparison of these implementations on real-life problems, such as those in [46].

We also implemented an algorithm that combines the ideas behind smart queues and hot
queues [6]. Informal experiments show that the resulting code performs a little better on the
hard instances but slightly worse on “typical” instances.

Our results suggest that the smart queue algorithm should be considered in practice when arc
lengths are nonnegative integers. The shortest path codes and generators used in this study are
available via URL http://www.avglab.com/andrew/soft.html.
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Appendix: Experimental Data

| n | BFS MB2L SQ2L MB2D SQ2D MB-A SQ-A |
277 time 0.15 155 156 3.86 226 188 1.63
emp./n | sec. 301 1.09 0.74  0.01 2.05 0.06
exp./n 1.09 1.04 7.14 1.56 2.00 1.05

218 time 0.30 1.73 1.64 415 226 193 1.73
emp./n | sec. 303 079 074 001 204 0.04
exp./n 145  1.19 765 156 236 1.19

219 time 0.62 168 163 441 231 189 171
emp./n | sec. 334 112 074 000 236 0.05
exp./n 1.06 101 815 158 196 1.01

220 time 130 1.83 179 464 235 194 1.79
emp./n | sec. 334 0.79 0.74 000 237 003
exp./n 141 1.20 8.65 1.58 209 1.06

2°l time 290 1.83 177 473 220 200 1.78
emp./n | sec.  3.67 1.13 0.74 000 236 003
exp./n 1.16  1.03 9.13 1.56 233  1.16

J

n | BFS MB2L 5Q2L MB2D SQ2D MB-A  SQ-A |
T {ime 008 171 171 271 214 1.8 1.71
emp./n | sec. 859 477 100 020 488  1.00
exp./n 0.46 0.39 1.1  0.83 061 041
28 time 0.17 166 161 280 213 1.81 168 |
emp./n | sec. 1245  5.10 1.00 0.29 417 1.31
exp./n | 0.27 022 151 083 063 046
2% time [ 035 1.65 1.65 2.74 217 1.73 1.61 |
emp./n | sec. 13.65  9.43 1.00 029 889 140
exp./n 042  0.38 151 683  0.52 0.34
220 time 0.75 159 1.60 272 210 1.64 1.60
emp./n | sec. 1780 10.09  1.00 0.29  6.98 147
exp./n 023 021 151 083 045 031
221 time 1.61 160 163 265 206 162 1.59
emp./n | sec. 2350 18.84 1.00 029 588 244
exp./n 0.40 037 151 083 052 0.42

Table 1: RAND-I (top) and LONG-I (bottom) family data
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IE | BFS MB2L $Q2L MB2D SQ2D MB-A SQ-A |

1 time | 297 139 135 1.39 1.36 138 135
emp. [ sec.  0.00 000 0.00 000 000 0.00
exp. 0.48 0.48 0.48 0.48 0.48 0.48

4 time | 299 1.74 159 199 1.73 147 1.42
emp. | sec. 0.00 0.00 0.00 0.00 0.00 0.00
exp. 1.04 0.88 1.64 1.15 0.42 0.39

8 time [ 3.03 1.81 1.69 280 1.96 1.79 1.70
emp. | sec. 0.00 0.00 0.00 0.00 0.00 0.00
exp. 1.26 1.05 3.51 1.49 1.26 1.05

12 time [ 3.00 186 1.73 3.41 207 1.85 1.74
emp. | sec. 0.01 0.01 0.01 0.00 0.01 0.01
exp. 1.35 1.13 5.49 1.56 1.35 1.13

16 time | 3.00 1.84 1.74 391 2.16 195 L71
emp. | sec. 0.14 0.07 0.08 0.00 0.12 0.04
exp. 1.37 1.16 7.44 1.56 2.04 1.08

20 time | 2.99 1.82 1.75 452 227 1.89 1.71
emp. | sec. 1.84 0.56 0.57 0.00 1.35 0.02
exp. 1.37 1.16 8.97 1.56 2.11 1.04

24 time | 2.99 2.08 1.80 4.95 230 2.11 1.76
emp. | sec. 18.43 1.32 0.93 0.00 6.12 0.03
exp. 1.33 1.13 9.23 1.56 2.99 1.12

28 time [2.92 259 1.85 522 237 213 175
emp. | sec. 55.33 1.35 0.95 0.00 11.72 0.04
exp. 1.33 1.13 9.23 1.56 2.79 1.06

32 time [ 298 249 1.85 511 236 2.13 1.74
emp. | sec. 55.33 1.36 0.95 0.00 11.72 0.04
exp. 1.33 1.13 9.23 1.56 2.79 1.06

Table 2: RAND-C family data
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[ u | BFS MB2L SQ2L MB2D SQ2D MB-A SQ-A |
1 time | 1.62 1.35 1.35 134 134 134 1.34
emp. | sec. 0.13 0.06 0.13 0.06 0.13  0.06
exp. 0.44 0.44 0.44 0.44 0.44 0.44
4  time | 1.63 1.54 1.54 172 1.60 1.42 1.49
emp. | sec. 0.61 0.34 0.55  0.23 0.69 0.66
exp. 0.88 0.71 129 D8O 039 0.38
8 time | 1.63 1.60 1.56 206 176 1.60 1.56
emp. | sec. 2.64 0.77 0.96 0.29 264 077
exp. 0.77 (.54 1.51 0.83 0.77 054
12 time | 1.63 1.56 1.55 228 187 1.56 1.55
emp. | sec. 5.82 244 1.00  0.29 582 244
exp. 0.52 0.42 1.51  0.83 0.52 042
16 time | 1.63 1.56 1.57 252 199 161 154
emp. | sec.  13.68 9.45 .00 0.29 887 140
exp. 0.42 0.38 1.51 0.83 0.52  0.34
20 time | 1.63 1.67 1.69 275 210 157 154
emp, | sec.  43.27  37.60 1.00 029 930 264
exp. 0.39 0.37 1.51  0.83 034 025
24  time | 1.62 2,22 2.16 299 223 164 161
emp. | sec. 146.96 136.51 1.00 0.30 610 230
exp. 0.35 0.33 1.51 0.84 0.51 (.40
28 time | 1.62 3.08 3.02 3.06 233 1656 1.64
emp. | sec. 212.05 205.08 1.00 0.35 10.96 272
exp. 0.31 0.30 1.51 0.91 043  0.38
32 time | 1.63 3.18 3.08 3.06 238 1.66  1.67
emp. | sec. 212.00 206.77 1.00 0.36 1096 291
exp. 0.31 0.31 1.51 0.92 043 0.40

Table 3: LONG-C family data
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[k | BFS MB  sq| [ k& | BFS MB sQ
" 2 time | 0.63 1189.20 1.38 2 time | 0.62 1199.67 1201.13
emp. | sec. 5242894 040 emp. | sec. 52428.94 52428.94
exp. U.60 0.30 exp. 0.60 0.60
3 time | 0.63 10.66 1.39 3 time | 0.62 9.48 9.39
emp. | sec. 1170.14 0.15 emp. | sec. 1170.14 1170.14
exp. 1.14 0.57 exp. 1.14 1.14
4 time | 0.62 2.68 1.44 L time | 0.63 2.67 2.82
emp. | sec. 170.44 0.11 emp. | sec. 170.44 170.44
exp. 1.56 0.67 exp. 1.56 1.56
6 time | 0.63 2.25 1.53 6 time | 0.62 2.25 2.45
emp. | sec. 2431 0.08 emp. | sec. 24.31 24.31
exp. 246 0.77 exp. 2.46 2.46
9 time | 0.62 2.87 1.60 9 time | 0.62 2.87 3.08
emp. | sec, 6.37 0.05 emp. | sec. 6.37 6.37
exp. 3.89  0.85 exp. 3.89 3.89
12 time | 0.63 3.70 1.66 12 time | 0.62 3.72 3.93
emp. | sec. 3.12  0.04 emp. | sec. 3.12 3.12
exp. 9.36 0.88 exp. 5.36 5.36
18 time | 0.63 5.86 1.82 18 time | 0.63 5.86 6.05
emp. | sec. 1.41 0.03 emp. | sec. 1.41 1.41
exp. 832 0.93 exp. 8.32 8.32
36 time | 0.62 16.32 2.32 36 time | 0.63 16.24 16.43
emp. | sec. 0.49 0.01 emp. | sec. 0.49 0.49
exp. 1775 097 exp. 17.75 17.75

Table 4: HARDI (left) and HARDO (right) family data
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| bits logA & BFS SQ-A
4 4 1 time | 0.62 1.37
emp. | sec. 0,33

exp. 0.04

6 3 2 time | 0.63 1.50
emp. | sec. 1.60

exp. 0.80

8 4 2 time | 0.62 1.51
emp. | sec.  3.20

exp. 0.80

15 5 3 time | 0.62 1.73
emp. | sec.  9.00

exp. 1.14

18 6 3 time | 0.62 1.78
emp. | sec. 18.14

exp. 1.14

24 6 4 time [ 0.62 1.98
emp. | sec. 21.11

exp. 1.56

30 6 5 time | 0.62 2.18
emp. | sec. 23.00

exp. 2.00

35 7 5 time | 0.62 2.32
emp. | sec. 46.27

exp. 2.00

42 7T 6 time | 0.62 2.55
emp. | sec. 4892

exp. 2.46

49 7 7 time | 0.62 2.80
emp. | sec. 50.87

exp. 2.93

Table 5: HARDEST-SQ family data
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