
Information Processing Letters 83 (2002) 175–180

A note on practical construction of maximum bandwidth paths✩

Navneet Malpania, Jianer Chenb,∗
a Intel Corporation, 505 E. Huntland Dr., Suite 550, Austin, TX 78752, USA

b Department of Computer Science, Texas A&M University, College Station, TX 77843-3112, USA

Received 26 September 2000
Communicated by F. Dehne

Abstract

Constructing maximum bandwidth paths has been a basic operation in the study of network routing, in particular in the
recent study of network QoS routing. In the literature, it has been proposed that a maximum bandwidth path be constructed
by a modified Dijkstra’s algorithm or by a modified Bellman–Ford algorithm. In this short note, we show that maximum
bandwidth paths can be constructed by a modified Kruskal’s algorithm. We demonstrate that this approach is simpler, easier
in implementation, more flexible, and faster than the previously proposed algorithms. 2001 Elsevier Science B.V. All rights
reserved.

Keywords: Network routing; Dijkstra’s algorithm; Kruskal’s algorithm

1. Introduction

As the Internet evolves into a global communication
infrastructure, there is a growing need to support
more sophisticated service than the traditional “best-
effort” service. In particular, Quality of Service (QoS)
routing has recently received substantial attention in
the context of its possible use in an integrated services
IP network (see, e.g., [2,7–9] and references therein).
It has been recognized that the establishment of an
efficient QoS routing scheme poses several complex
challenges.

A QoS connection request in general consists of a
source nodes, a destination nodet , and a set of QoS

✩ This work is supported in part by the National Science Founda-
tion under Grant CCR-0000206.

* Corresponding author.
E-mail addresses: navneet.malpani@intel.com (N. Malpani),

chen@cs.tamu.edu (J. Chen).

requirements. Each QoS requirement can be either a
“bottleneck” constraint, typically the path bandwidth
constraint, or an “additive” constraint, such as path de-
lay, packet loss, or jitter [1]. This is well known that
constructing a routing path subject to more than one
additive constraint is NP-hard [12]. Therefore, many
researchers have turned their attention to designing ei-
ther heuristic algorithms or approximation algorithms
for the QoS routing problem [2,7–9,12].

In many proposed QoS routing algorithms, the
following subproblem needs to be solved:

MAX -BANDWIDTH PATH problem. Given a source
nodes and a destination nodet in a networkG, in
which each linkl is associated with a valueb(l) (call
it the link-bandwidth of l), construct a path froms to
t in G whose bandwidth is maximized (thebandwidth
of a path is equal to the minimum link-bandwidth over
all links in the path).

0020-0190/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(01)00323-4



176 N. Malpani, J. Chen / Information Processing Letters 83 (2002) 175–180

For example, in the widest-shortest path heuristic
[8], a path of maximum bandwidth needs to be con-
structed from a structureS that contains all shortest
paths from the source node to the destination node,
while in the shortest-widest path heuristic [12], a
structureW containing all maximum bandwidth paths
should be constructed, from which a shortest path is
selected. Note that the structureW can be easily con-
structed when a single maximum bandwidth path is
given. The MAX -BANDWIDTH PATH problem has be-
come a fairly standard and often encountered subprob-
lem in the study of network QoS routing.

The MAX -BANDWIDTH PATH problem is not new.
Its study can be traced back to 30 years ago in the
study of the MAXIMUM FLOW problem. In [4], Ed-
monds and Karp pointed out that the MAX -BAND-
WIDTH PATH problem (it was called the BOTTLE-
NECK problem in [4]) can be solved in time O(m logn)

using a modified Dijkstra’s shortest path algorithm
[3]. This observation has been used by all latter stud-
ies in the MAXIMUM FLOW problem (e.g., see [11]),
and in the network QoS routing algorithms [1,7–10,
12]. In particular, in the simulation programs for all
proposed heuristic algorithms, the modified Dijkstra’s
shortest path algorithm has been implemented when-
ever a maximum bandwidth path is constructed.

In this short note, we present a very simple proof
to show that the MAX -BANDWIDTH PATH problem
can be solved based on a maximum spanning tree
of the network. This observation suggests that the

MAX -BANDWIDTH PATH problem can be solved us-
ing Kruskal’s algorithm [3]. Although Dijkstra’s al-
gorithm and Kruskal’s algorithm have the same time
complexity asymptotically, Kruskal’s algorithm takes
a simpler form and runs much faster practically. We
demonstrate simulation results based on a variety of
network topologies, which show that for constructing
a maximum bandwidth path in a network, Kruskal’s
algorithm is always at least three times as fast as Dijk-
stra’s algorithm. We also indicate other advantages of
our approach over the traditional approaches.

2. Dijkstra versus Kruskal

Let a networkG be represented by an undirected
graphG = (V ,E), whereV is the set of nodes inG
andE is the set of links inG. Each linke = [u,v] in E

is associated with abandwidth valueb(e) = b([u,v]).
Let P = {v1, v2, . . . , vr } be a path inG, wherevi ,
i = 1,2, . . . , r, are nodes inG and [vi, vi+1], i =
1,2, . . . , r − 1 are edges inG. Thebandwidth of the
path P is defined to be min{b([vi, vi+1]) | 1 � i �
r − 1}.

As suggested by Edmonds and Karp [4], given a
source nodes and a destination nodet in G, a path
from s to t in G with the maximum bandwidth can
be constructed by a modified Dijkstra’s shortest path
algorithm. This modified Dijkstra’s algorithm is given
in Fig. 1. Here the array elementP [v] records the

Algorithm. Dijkstra

Input: a networkG, a source nodes and a destination nodet
Output: a path froms to t with the maximum bandwidth
1. for each nodev in G do { P [v] = 0; B[v] = −∞; }
2. B[s] = +∞; F = ∅;
3. for each neighborw of s do { P [w] = s; B[w] = b([s,w]); addw to F ; }
4. repeat

remove the nodeu of maximumB[u] from F

for each neighborw of u do
case 1. B[w] = −∞:

{ P [w] = u; B[w] = min{B[u], b([u,w])}; addw to F }
case 2. (w is in F ) and (B[w] < min{B[u], b([u,w])}):

{ P [w] = u; B[w] = min{B[u], b([u,w])}; }
until B[t] �= −∞ andt is not inF

Fig. 1. Modified Dijkstra’s algorithm for MAX -BANDWIDTH PATH.



N. Malpani, J. Chen / Information Processing Letters 83 (2002) 175–180 177

father of the nodev in the maximum bandwidth tree,
and the array elementB[v] records the bandwidth
of the path from the source nodes to the node
v in the maximum bandwidth tree. The setF of
“fringers” can be implemented by a priority queue
that supports dynamically the minimum, insertion, and
deletion operations in O(logn) time per operation. The
algorithmDijkstra runs in time O(m logn), wherem

is the number of links andn is the number of nodes
in the networkG. Using more subtle data structure
and analysis [5], the time complexity of Dijkstra’s
algorithm can be further reduced to O(m + n logn).

Now we turn our attention to another problem,
the maximum spanning tree problem in the weighted
networkG, where we use the link bandwidth as link
weights. A maximum spanning tree T in G is a
spanning tree ofG such that the weight

∑
e∈T b(e)

of the treeT is the maximum over all spanning trees
of G. The following theorem shows an interesting
relation between a maximum spanning tree and a
maximum bandwidth path.

Theorem 2.1. Let G be a network, in which each
link e has a bandwidth value b(e), let T be a
maximum spanning tree in G (with respect to the link
bandwidth). Then for any two nodes s and t in G,
the unique path Pst in T from s to t is a maximum
bandwidth path from s to t in G.

Proof. Let Pmax be a maximum bandwidth path from
s to t in the networkG. We show that the bandwidth
of the unique pathPst from s to t in the maximum
spanning tree is at least as large as the that ofPmax.

If all links in Pmax are inT , thenPmax = Pst and we
have nothing to prove. Thus, assume thate = [u,v] is
the first link onPmax that is not in the spanning treeT .
Consider the unique pathPuv = {e1, . . . , er} in the tree
T from nodeu to nodev (see Fig. 2 for an illustration).
Note thatPuv ∪ {e} forms a cycle.

We claim b(e) � min{b(ei) | 1 � i � r}. In fact,
if b(e) > b(ei) for somei, thenT ′ = T − {ei} ∪ {e}
would form a spanning tree such that the sum of link
bandwidths ofT ′ is larger than that ofT , contradicting
the assumption thatT is a maximum spanning tree.
Therefore, if we replace the linke in Pmax by the
pathPuv in T , we get a pathP ′ whose bandwidth is
not smaller than that ofPmax. Moreover, the number
of links in P ′ that are not inT is 1 fewer than that

Fig. 2. The maximum spanning tree and the maximum bandwidth
path, where solid lines are for the maximum spanning tree and the
dashed lines are for the maximum bandwidth path.

in Pmax. Note that the resulting pathP ′ may not be
“simple”, i.e., some nodes may repeat on the path
P ′, but we can easily remove the segments between
two appearances of the same node, without decreasing
the bandwidth of the path. In any case, we will get
a simple path froms to t , in which the number of
links not inT is 1 fewer than that inPmax, and whose
bandwidth is not smaller than that ofPmax.

Repeating the above process will eventually give
us a simple path entirely inT from s and t , whose
bandwidth is not smaller than that ofPmax. Since there
is a unique such path in the treeT , the theorem is
proved. ✷

Theorem 2.1 suggests that we can construct a max-
imum bandwidth path from the source nodes to the
destination nodet based on a maximum spanning tree.
Constructing a maximum spanning tree can be es-
sentially done using any minimum spanning tree al-
gorithm. One of the well-known algorithms for min-
imum spanning tree construction is Kruskal’s algo-
rithm [3]. We modify the algorithm and make it work
for constructing a maximum spanning tree. The mod-
ified Kruskal’s algorithm is presented in Fig. 3. Here
each set is given by a Union-Find tree such that a se-
quence ofm MakeASet, Union, and Find operations
takes time O(m log∗ n), where log∗ n � 6 for all prac-
tical numbersn [3]. Therefore, the time complexity
of Kruskal’s algorithm ist (m) + O(m log∗ n), where
t (m) = O(m logn) is the time of step 1 for sorting
m elements. Based on a Dijkstra’s style algorithm,
with a subtle data structure and analysis, the maxi-
mum spanning tree problem can be solved in time
O(m + n logn) [5]. Further investigation [6] actually
shows that the maximum spanning tree problem can



178 N. Malpani, J. Chen / Information Processing Letters 83 (2002) 175–180

Algorithm. Kruskal

Input: a networkG
Output: a maximum spanning tree
1. sort the links ofG in terms of link bandwidth in non-increasing order:{e1, e2, . . . , em};
2. for each nodev of G do MakeASet(v);
3. T = ∅;
4. for i = 1 to m do

let ei = [ui, vi ]; r1 = Find(ui); r2 = Find(vi );
if r1 �= r2 then { add ei to T ; Union(r1, r2) }

Fig. 3. Kruskal’s algorithm for MAXIMUM SPANNING TREE.

be solved in O(m logβ(n,m)) time, whereβ(n,m) =
min{i | logi n � m/n} � log∗ n. Finally, once the max-
imum spanning treeT is constructed, the unique path
from s to t in the treeT can be easily constructed in
linear time O(n).

Therefore, the maximum spanning tree problem can
be solved at least as efficiently as the Dijkstra’s algo-
rithm. Moreover, since logβ(n,m) � 3 for all practi-
cal valuesn, andm = O(n) for most practical applica-
tions in network QoS routing, the maximum spanning
tree problem can be solved more efficiently (in time
O(m logβ(n,m))) than the best implementation of the
Dijkstra’s algorithm (in time O(m + n logn)) in net-
work applications.

Although the best theoretical bounds for Dijkstra’s
algorithm and the algorithms for the maximum span-
ning tree problem are better than O(m logn), these
best algorithms are difficult to understand and the im-
plementations of these best algorithms are in general
subtle and involved. Most practical implementations
for Dijkstra’s algorithm and Kruskal’s algorithm are
based on the algorithms given in Figs. 1 and 3, where
the setF of fringers in Fig. 1 is implemented as a sim-
ple priority queue, such as a binary heap, and the sets
in Fig. 3 are given as simple Union-Find trees. In the
following, we would like to compare these two algo-
rithms from a practical point of view.

Kruskal’s algorithm seems to have many advantages
over Dijkstra’s algorithm:
• Kruskal’s algorithm is simpler. From the view of

programming, Kruskal’s algorithm requires a much
shorter program than that for Dijkstra’s algorithm.
From the view of data structure, Kruskal’s algo-
rithm uses two simple arrays (a “father” array and

a “rank” array) to implement the Union-Find trees,
while Dijkstra’s algorithm requires at least three ar-
rays (for the “father” relations, “weights”, and “sta-
tus”) plus a priority queue.

• Kruskal’s algorithm has time complexity O(m log∗ n)

plus the timet (m) for sorting them edges. Since
there are many very well-studied sorting algorithms,
which have been either written as standard soft-
ware packages or even coded in hardware, the time
t (m) is m logn times a very small constant. On the
other hand, for a simple priority queue used in Dijk-
stra’s algorithm, each of the minimum, insertion,
and deletion operations takes timec logn with a rel-
atively large constantc. Therefore, intuitively we
can see that Kruskal’s algorithm can be expected to
be several times faster than Dijkstra’s algorithm.

• Since in many practical cases, sorting can be done
in linear time, this makes Kruskal’s algorithm run
in time O(m log∗ n), which is essentially linear.

• Finally, note that a maximum spanning tree is not
particularly with respect to any referred source node
and destination node, therefore, a maximum span-
ning tree actually provides a maximum bandwidth
path for any pair of source node and destination
node. On the other hand, Dijkstra’s algorithm only
provides maximum bandwidth paths from a fixed
source node to other nodes.

3. Simulation results

In order to confirm our intuitions, we have pro-
grammed both Dijkstra’s algorithm in Fig. 1 and
Kruskal’s algorithm in Fig. 3, and compared their per-
formance based on a variety of network topologies. In



N. Malpani, J. Chen / Information Processing Letters 83 (2002) 175–180 179

Fig. 4. Simulation results for Dijkstra’s algorithm and Kruskal’s algorithm.



180 N. Malpani, J. Chen / Information Processing Letters 83 (2002) 175–180

the implementation of Kruskal’s algorithm, we have
also included a depth first search process that con-
structs the actual path from the source node to the des-
tination node after the maximum spanning tree is con-
structed. To make the comparison fair, we have used
similar data structures for the algorithms. In partic-
ular, the priority queue used in Dijkstra’s algorithm
was implemented by abinary heap that supports min-
imum, insertion, and deletion in O(logn) time per op-
eration [3], and the sorting in Kruskal’s algorithm is
based onheapsort [3].

We tested the algorithms on six kinds of networks,
based on different topologies and different link densi-
ties (we say a networkG of n nodes has link densityD
if the number of links in the network isD ·n(n−1)/2).
The networks in the first group are mesh networks. We
have fixed number of columns in the mesh networks
to be 20, and varied the number of rows in the mesh
networks by 10, 20, 30, and 40 (thus, the number of
nodes in the mesh networks are 200, 400, 600, and
800, respectively). The networks in the second group
are hypercube networks and we tested our algorithms
on hypercube networks of dimensions 7, 8, 9, and 10
(thus, the number of nodes in the hypercube networks
are 128, 256, 512, and 1024, respectively). The net-
works in the third group are randomly generated net-
works in which each node has degree exactly 6. We
tested our algorithms on this group of networks with
200, 400, 600, and 800 nodes, respectively. The net-
works are generated by repeating the process of ran-
domly picking two nodes of degree less than 6 and
adding an edge between them. The networks in the
last three groups are random networks with link den-
sity D equal to 1%, 5%, and 40%, respectively. The
networks were generated by creating a link between
every pair of nodes in the network with probabilityD.
For each of these three groups of networks, we also
tested our algorithms on networks of 200, 400, 600,
and 800 nodes, respectively. For the networks in all
these groups, the link-bandwidth of each link is as-
signed a random integer between 1 and 100.

The implemented programs for these algorithms
were run on a Sun WorkStation, Version 5.7 with a
Sparc processor. The simulation results are given in
Fig. 4.

Since most existing networks have very low link
density, we have mainly concentrated on networks
of low link density. From the simulation results, we
can see that on mesh networks, hypercube networks,
networks of uniform node degree 6, networks of
link density 1%, and networks of link density 5%,
Kruskal’s algorithm in general is at least five times as
faster as Dijkstra’s algorithm. We have also tested our
algorithms on dense networks of link density 40%, and
observed that even for such dense networks, Kruskal’s
algorithm is still more than three times as fast as
Dijkstra’s algorithm.

References

[1] G. Apostolopoulos, R. Guerin, S. Kamat, A. Orda, T. Przy-
gienda, D. Williams, QoS routing mechanisms and OSPF ex-
tensions, RFC No. 2676, Internet Engineering Task Force, Au-
gust 1999.

[2] S. Chen, K. Nahrsted, An overview of quality of service
routing for next-generation high-speed networks: Problems
and solutions, IEEE Network 12 (6) (1998) 64–79.

[3] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algo-
rithms, MIT Press, Cambridge, MA, 1990.

[4] J. Edmonds, R.M. Karp, Theoretical improvements in algorith-
mic efficiency for network flow problems, J. ACM 19 (1972)
248–264.

[5] M. Fredman, R. Tarjan, Fibonancci heaps and their uses in
improved network optimization problems, J. ACM 34 (1987)
596–615.

[6] H. Gabow, Z. Galil, T. Spencer, R. Tarjan, Efficient algorithms
for finding minimum spanning trees in undirected and directed
graphs, Combinatorica 6 (1986) 109–122.

[7] R. Guerin, A. Orda, QoS-based routing in networks with
inaccurate information: theory and algorithms, IEEE/ACM
Trans. Networking 7 (1999) 350–364.

[8] R. Guerin, A. Orda, D. Williams, QoS routing mechanisms and
OSPF Extensions, in: Proc. 2nd IEEE Global Internet Mini-
Conference, Phoenix, AZ, 1997.

[9] A. Orda, Routing with end to end QoS guarantees in broad-
band networks, IEEE/ACM Trans. Networking 7 (1999) 365–
374.

[10] A. Orda, A. Sprintson, QoS routing: The precomputation
perspective, in: IEEE INFOCOM’2000, Tel-Aviv, Israel, 2000.

[11] R.E. Tarjan, Data Structures and Network Algorithms,
CBMS–NSF Regional Conf. Ser. Appl. Math., Vol. 44, SIAM,
Philadelphia, PA, 1983, pp. 393–400.

[12] Z. Wang, J. Crowcroft, Quality of service routing for sup-
porting multimedia applications, IEEE J. Selected Areas
Comm. 14 (1996) 1228–1334.


