Efficient algorithms for Steiner Tree Problem

Jie Meng
The Steiner Problem in Graphs,
by S.E. Dreyfus and R.A. Wagner,
Networks, 1972

A Faster Algorithm for the Steiner Tree Problem,
By D. Molle, S. Richter and P. Rossmanith,
STACS06, 2006
Definitions and Background

- Given a weighted graph $G=(V, E, \omega)$, weight on edges, and a steiner set $S \subseteq V$;
- A **steiner graph** of S is a connected subgraph of G which contains all nodes in S;
- The **Steiner Tree problem** is to find a steiner graph of S with minimum weight.
- This problem is quite important in industrial applications.
Definitions and Background

- The Steiner Tree problem is NP-Complete (By Karp, 1971).
- Approximatable within 1.55 ratio, but APX-complete.
- Solvable in $O(3^k n^2)$
- Improved up to $(2 + \delta)^k n^{O(\frac{1}{\delta \ln \frac{1}{\delta}})}$
Definitions and Background

Why Steiner Tree problem is Hard?

Spanning Tree VS. Steiner Tree
Theorem: Let T be an optimal steiner tree for S, q be an inner node in T; If we break down T into several subtrees $T_1, T_2 \ldots$ in q, T_i are optimal for $V(T_i) \cap S + q$.

This can be proved by contradiction.
Definition and Background
Definition and Background
Dreyfus-Wagner’s Algorithm

Two Phrases:
- Computing the optimal steiner trees containing D and p, where \(D \subseteq S, \ p \in V; \)
- Computing the optimal steiner tree for S;
- Let \(OPT(D, p) \) denote the optimal steiner tree for D and p, \(SP(u, v) \) denote the shortest path between u and v in G;
Dreyfus-Wagner’s Algorithm

- Computing the optimal steiner trees for D and p;
- If |D|<3, w.l.o.g. let D={d₁, d₂}, so

\[OPT(D, p) = \min_{q \in V} \{SP(d₁, q) + SP(d₂, q) + SP(p, q)\} \]
Dreyfus-Wagner’s Algorithm

- Computing the optimal Steiner trees for D and p;

- If $|D| \geq 3$, then

$$OPT(D, p) = \min_{q \in V, E \subseteq D} \{SP(p, q) + OPT(E, q) + OPT(D - E, q)\}$$
Dreyfus-Wagner’s Algorithm

Computing the optimal Steiner tree for S:

$$OPT(S) = \min_{q \in V, D \subseteq S} \{OPT(D, q) + OPT(S - D, q)\}$$
Dreyfus-Wagner’s Algorithm

- Time Complexity:
 - Phrase 1, time=$\sum_{i=3}^{k} \binom{k}{i} 2^i n^2 \leq 3^k n^2$
 - Phrase 2, time=$2^k n^2$

- Total Dreyfus-Wagner’s algorithm takes time $O(3^k n^2)$.
MRR’s algorithm

- The most time-consume part of Dreyfus-Wagner algorithm is phrase 1, we have to enumerate all possible subsets of every subset of S;
- Can we reduce the cost of this part?
MRR’s algorithm

- Break down the optimal steiner tree only in steiner node;
- Enumerate subset only of size <t;
MRR’s Algorithm
MRR’s Algorithm
MRR’s algorithm

For all subset D of S:

$$OPT(D) = \min_{E \subseteq D, |E| \leq t} \{OPT(E) + OPT(D - E + q)\}$$

$q \in D$
MRR’s algorithm

In some cases, this procedure may fail, simply because all steiner nodes have already become leaves, and the tree is still not small enough.
MRR’s algorithm
Extend the steiner set
MRR’s algorithm
MRR’s algorithm

Lemma Let T be an optimal steiner tree for S, t is an integer, we can add at most \(\frac{|S|}{(t-1)} \) many non-steiner nodes into S such that T can be divided into several subtrees of size no larger than t, and all nodes in S are leaves in those subtree.
MRR’s algorithm

- Let $t = c |S|$;
- Enumerate all possible subset of V of size $|S|/(t-1)$, add this set into S;
- For all subsets D of S of size less than t, call Dreyfus-Wagner algorithm to compute the optimal steiner tree for D;
- For all subsets D of S of size no less than t,

$$OPT(D) = \min_{E \subseteq D, |E| \leq t} \{OPT(E) + OPT(D - E + q)\}$$
MRR’s algorithm

- The running time of this algorithm is

\[(2 + \delta)^k n^{O\left(\frac{1}{\delta} \ln \frac{1}{\delta}\right)}\]

Question?